Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0284642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718041

RESUMO

The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.


Assuntos
Reparo do DNA , Guanina , Metagenoma , Oxirredução , Guanina/metabolismo , Fontes Hidrotermais/microbiologia
2.
ISME Commun ; 4(1): ycae029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38524762

RESUMO

Great Salt Lake (GSL), located northwest of Salt Lake City, UT, is the largest terminal lake in the USA. While the average salinity of seawater is ~3.3%, the salinity in GSL ranges between 5% and 28%. In addition to being a hypersaline environment, GSL also contains toxic concentrations of heavy metals, such as arsenic, mercury, and lead. The extreme environment of GSL makes it an intriguing subject of study, both for its unique microbiome and its potential to harbor novel natural product-producing bacteria, which could be used as resources for the discovery of biologically active compounds. Though work has been done to survey and catalog bacteria found in GSL, the Lake's microbiome is largely unexplored, and little to no work has been done to characterize the natural product potential of GSL microbes. Here, we investigate the bacterial diversity of two important regions within GSL, describe the first genomic characterization of Actinomycetota isolated from GSL sediment, including the identification of two new Actinomycetota species, and provide the first survey of the natural product potential of GSL bacteria.

3.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986792

RESUMO

Great Salt Lake (GSL), located northwest of Salt Lake City, UT, is the largest terminal lake in the United States. While the average salinity of seawater is ~3.3%, the salinity in GSL ranges between 5-28%. In addition to being a hypersaline environment, GSL also contains toxic concentrations of heavy metals, such as arsenic, mercury, and lead. The extreme environment of GSL makes it an intriguing subject of study, both for its unique microbiome and its potential to harbor novel natural product-producing bacteria, which could be used as resources for the discovery of biologically active compounds. Though work has been done to survey and catalogue bacteria found in GSL, the Lake's microbiome is largely unexplored, and little-to-no work has been done to characterize the natural product potential of GSL microbes. Here, we investigate the bacterial diversity of two important regions within GSL, describe the first genomic characterization of Actinomycetota isolated from GSL sediment, including the identification of a new Saccharomonospora species, and provide the first survey of the natural product potential of GSL bacteria.

4.
Astrobiology ; 23(9): 979-990, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37594859

RESUMO

In recent years, strong evidence has emerged indicating the potential habitability of the subsurface of Mars. Occasional discharge events that bring subsurface fluids to the surface may carry with them the biological traces of subsurface organisms. Similar events are known to take place on Earth and are frequently associated with long-term mineralogical preservation of organic material, including DNA. Taking advantage of this process may allow for the development of life-detection strategies targeting biosignatures from the more habitable subsurface environment without the need for direct subsurface exploration. To test the potential for this approach to life-detection, we adapted a protocol to extract microbial DNA preserved in carbonate rocks and tested its efficacy in detecting subsurface organisms at a Mars analog site in southeastern Utah, USA, using samples from ancient and modern carbonate deposits associated with natural and artificial springs. Our results indicated that DNA from deep-subsurface organisms preserved in carbonate deposits can remain recoverable for up to 100,000 years, supporting life-detection strategies based on the detection of deep-subsurface biosignatures in surface-exposed rocks on Mars.


Assuntos
Carbonatos , Marte , Utah , Planeta Terra
5.
Nat Microbiol ; 8(9): 1619-1633, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500801

RESUMO

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.


Assuntos
Archaea , Simbiose , Archaea/genética , Archaea/metabolismo , Simbiose/genética , Genômica , Plasmídeos , DNA/metabolismo
6.
Front Microbiol ; 13: 960335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466646

RESUMO

Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.

7.
mSystems ; 7(6): e0084622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377900

RESUMO

The Bonneville Salt Flats (BSF) appear to be entirely desolate when viewed from above, but they host rich microbial communities just below the surface salt crust. In this study, we investigated the metabolic potential of the BSF microbial ecosystem. The predicted and measured metabolic activities provide new insights into the ecosystem functions of evaporite landscapes and are an important analog for potential subsurface microbial ecosystems on ancient and modern Mars. Hypersaline and evaporite systems have been investigated previously as astrobiological analogs for Mars and other salty celestial bodies, but these studies have generally focused on aquatic systems and cultivation-dependent approaches. Here, we present an ecosystem-level examination of metabolic pathways within the shallow subsurface of evaporites. We detected aerobic and anaerobic respiration as well as methanogenesis in BSF sediments. Metagenome-assembled genomes of diverse bacteria and archaea encode a remarkable diversity of metabolic pathways, including those associated with carbon fixation, carbon monoxide oxidation, acetogenesis, methanogenesis, sulfide oxidation, denitrification, and nitrogen fixation. These results demonstrate the potential for multiple energy sources and metabolic pathways in BSF and highlight the possibility for vibrant microbial ecosystems in the shallow subsurface of evaporites. IMPORTANCE The Bonneville Salt Flats is a unique ecosystem created from 10,000 years of desiccation and serves as an important natural laboratory for the investigation of the habitability of salty, halite, and gypsum-rich environments. Here, we show that gypsum-rich mineral deposits host a surprising diversity of organisms and appear to play a key role in stimulating the microbial cycling of sulfur and nitrogen compounds. This work highlights how diverse microbial communities within the shallow subsurface sediments are capable of maintaining an active and sustainable ecosystem, even though the surface salt crust appears to be completely devoid of life.


Assuntos
Sulfato de Cálcio , Microbiota , Sulfato de Cálcio/metabolismo , Bactérias/genética , Archaea/genética , Cloreto de Sódio/metabolismo , Microbiota/genética , Cloreto de Sódio na Dieta/metabolismo
8.
Appl Environ Microbiol ; 88(17): e0092922, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950875

RESUMO

Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.


Assuntos
Ecossistema , Fontes Hidrotermais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia , Sulfatos/metabolismo
9.
Sci Total Environ ; 836: 155492, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35476949

RESUMO

Ney Springs, a continental serpentinizing spring in northern California, has an exceptionally high reported pH (12.4) for a naturally occurring water source. With high conductivity fluids, it is geochemically more akin to marine serpentinizing systems than other terrestrial locations. Our geochemical analyses also revealed high sulfide concentrations (544 mg/L) and methane emissions (83% volume gas content) relative to other serpentinizing systems. Thermodynamic calculations were used to investigate the potential for substrates resulting from serpentinization to fuel microbial life, and were found to support the energetic feasibility of sulfate reduction, anaerobic methane oxidation, denitrification, and anaerobic sulfide oxidation within this system. Assessment of the microbial community via 16S rRNA taxonomic gene surveys and metagenome sequencing revealed a community composition dominated by poorly characterized members of the Izemoplasmatales and Clostridiales. The genomes of these dominant taxa point to a fermentative lifestyle, though other highly complete (>90%) metagenome assembled genomes support the potential for organisms to perform sulfate reduction, sulfur disproportionation and/or sulfur oxidation (aerobic and anaerobic). Two chemolithoheterotrophs identified in the metagenome, a Halomonas sp. and a Rhodobacteraceae sp., were isolated and shown to oxidize thiosulfate and were capable of growth in conditions up to pH 12.4. Despite being characteristic products of serpentinization reactions, little evidence was seen for hydrogen and methane utilization in the Ney Springs microbial community. Hydrogen is not highly abundant and could be consumed prior to reaching the spring community. Other metabolic strategies may be outcompeted by more energetically favorable heterotrophic or fermentation reactions, or even inhibited by other compounds in the spring such as ammonia. The unique geochemistry of Ney Springs provides an opportunity to study how local geology interacts with serpentinized fluids, while its microbial community can better inform us of the metabolic strategies employed in hyperalkaline environments.


Assuntos
Metano , Enxofre , Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Sulfatos , Sulfetos
10.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986141

RESUMO

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Assuntos
Archaea , Elétrons , Anaerobiose , Archaea/genética , Archaea/metabolismo , Genômica , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Filogenia , Sulfatos/metabolismo
11.
mSystems ; 6(5): e0030021, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519519

RESUMO

In recent years, our appreciation of the extent of habitable environments in Earth's subsurface has greatly expanded, as has our understanding of the biodiversity contained within. Most studies have relied on single sampling points, rather than considering the long-term dynamics of subsurface environments and their microbial populations. One such habitat are aquifers associated with the aqueous alteration of ultramafic rocks through a process known as serpentinization. Ecological modeling performed on a multiyear time series of microbiology, hydrology, and geochemistry in an ultrabasic aquifer within the Coast Range Ophiolite reveals that community assembly is governed by undominated assembly (i.e., neither stochastic [random] nor deterministic [selective] processes alone govern assembly). Controls on community assembly were further assessed by characterizing aquifer hydrogeology and microbial community adaptations to the environment. These analyses show that low permeability rocks in the aquifer restrict the transmission of microbial populations between closely situated wells. Alpha and beta diversity measures and metagenomic and metatranscriptomic data from microbial communities indicate that high pH and low dissolved inorganic carbon levels impose strong environmental selection on microbial communities within individual wells. Here, we find that the interaction between strong selection imposed by extreme pH and enhanced ecological drift due to dispersal limitation imposed by slow fluid flow results in the undominated assembly signal observed throughout the site. Strong environmental selection paired with extremely low dispersal in the subsurface results in low diversity microbial communities that are well adapted to extreme pH conditions and subject to enhanced stochasticity introduced by ecological drift over time. IMPORTANCE Microbial communities existing under extreme or stressful conditions have long been thought to be structured primarily by deterministic processes. The application of macroecology theory and modeling to microbial communities in recent years has spurred assessment of assembly processes in microbial communities, revealing that both stochastic and deterministic processes are at play to different extents within natural environments. We show that low diversity microbial communities in a hard-rock serpentinizing aquifer are assembled under the influence of strong selective processes imposed by high pH and enhanced ecological drift that occurs as the result of dispersal limitation due to the slow movement of water in the low permeability aquifer. This study demonstrates the important roles that both selection and dispersal limitation play in terrestrial serpentinites, where extreme pH assembles a microbial metacommunity well adapted to alkaline conditions and dispersal limitation drives compositional differences in microbial community composition between local communities in the subsurface.

12.
Gigascience ; 9(11)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215210

RESUMO

BACKGROUND: Wastewater treatment is an essential tool for maintaining water quality in urban environments. While the treatment of wastewater can remove most bacterial cells, some will inevitably survive treatment to be released into natural environments. Previous studies have investigated antibiotic resistance within wastewater treatment plants, but few studies have explored how a river's complete set of antibiotic resistance genes (the "resistome") is affected by the release of treated effluent into surface waters. RESULTS: Here we used high-throughput, deep metagenomic sequencing to investigate the effect of treated wastewater effluent on the resistome of an urban river and the downstream distribution of effluent-associated antibiotic resistance genes and mobile genetic elements. Treated effluent release was found to be associated with increased abundance and diversity of antibiotic resistance genes and mobile genetic elements. The impact of wastewater discharge on the river's resistome diminished with increasing distance from effluent discharge points. The resistome at river locations that were not immediately downstream from any wastewater discharge points was dominated by a single integron carrying genes associated with resistance to sulfonamides and quaternary ammonium compounds. CONCLUSIONS: Our study documents variations in the resistome of an urban watershed from headwaters to a major confluence in an urban center. Greater abundances and diversity of antibiotic resistance genes are associated with human fecal contamination in river surface water, but the fecal contamination effect seems to be localized, with little measurable effect in downstream waters. The diverse composition of antibiotic resistance genes throughout the watershed suggests the influence of multiple environmental and biological factors.


Assuntos
Genes Bacterianos , Águas Residuárias , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Rios
13.
PeerJ ; 8: e9307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566404

RESUMO

The decomposition of carrion is carried out by a suite of macro- and micro-organisms who interact with each other in a variety of ecological contexts. The ultimate result of carrion decomposition is the recycling of carbon and nutrients from the carrion back into the ecosystem. Exploring these ecological interactions among animals and microbes is a critical aspect of understanding the nutrient cycling of an ecosystem. Here we investigate the potential impacts that vertebrate scavenging may have on the microbial community of carrion. In this study, we placed seven juvenile domestic cow carcasses in the Grassy Mountain region of Utah, USA and collected tissue samples at periodic intervals. Using high-depth environmental sequencing of the 16S rRNA gene and camera trap data, we documented the microbial community shifts associated with decomposition and with vertebrate scavenger visitation. The remarkable scarcity of animals at our study site enabled us to examine natural carrion decomposition in the near absence of animal scavengers. Our results indicate that the microbial communities of carcasses that experienced large amounts of scavenging activity were not significantly different than those carcasses that observed very little scavenging activity. Rather, the microbial community shifts reflected changes in the stage of decomposition similar to other studies documenting the successional changes of carrion microbial communities. Our study suggests that microbial community succession on carrion follows consistent patterns that are largely unaffected by vertebrate scavenging.

14.
Environ Microbiol ; 22(6): 2329-2345, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249550

RESUMO

Serpentinization is the hydration and oxidation of ultramafic rock, which occurs as oceanic lithosphere is emplaced onto continental margins (ophiolites), and along the seafloor as faulting exposes this mantle-derived material to circulating hydrothermal fluids. This process leads to distinctive fluid chemistries as molecular hydrogen (H2 ) and hydroxyl ions (OH- ) are produced and reduced carbon compounds are mobilized. Serpentinizing ophiolites also serve as a vector to transport sulfur compounds from the seafloor onto the continents. We investigated hyperalkaline, sulfur-rich, brackish groundwater in a serpentinizing continental ophiolite to elucidate the role of sulfur compounds in fuelling in situ microbial activities. Here we illustrate that key sulfur-cycling taxa, including Dethiobacter, Desulfitispora and 'Desulforudis', persist throughout this extreme environment. Biologically catalysed redox reactions involving sulfate, sulfide and intermediate sulfur compounds are thermodynamically favourable in the groundwater, which indicates they may be vital to sustaining life in these characteristically oxidant- and energy-limited systems. Furthermore, metagenomic and metatranscriptomic analyses reveal a complex network involving sulfate reduction, sulfide oxidation and thiosulfate reactions. Our findings highlight the importance of the complete inorganic sulfur cycle in serpentinizing fluids and suggest sulfur biogeochemistry provides a key link between terrestrial serpentinizing ecosystems and their submarine heritage.


Assuntos
Fenômenos Geológicos , Compostos de Enxofre/metabolismo , Microbiologia da Água , Microbiota , Oxirredução , Enxofre
15.
mSystems ; 5(2)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156795

RESUMO

Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable.IMPORTANCE This study describes the potential metabolic pathways by which microbial communities in a serpentinite-influenced aquifer may produce biomass from the products of serpentinization. Serpentinization is a widespread geochemical process, taking place over large regions of the seafloor and at continental margins, where ancient seafloor has accreted onto the continents. Because of the difficulty in delineating abiotic and biotic processes in these environments, major questions remain related to microbial contributions to the carbon cycle and physiological adaptation to serpentinite habitats. This research explores multiple mechanisms of carbon fixation and assimilation in serpentinite-hosted microbial communities.

16.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220840

RESUMO

The Atlantis Massif rises 4,000 m above the seafloor near the Mid-Atlantic Ridge and consists of rocks uplifted from Earth's lower crust and upper mantle. Exposure of the mantle rocks to seawater leads to their alteration into serpentinites. These aqueous geochemical reactions, collectively known as the process of serpentinization, are exothermic and are associated with the release of hydrogen gas (H2), methane (CH4), and small organic molecules. The biological consequences of this flux of energy and organic compounds from the Atlantis Massif were explored by International Ocean Discovery Program (IODP) Expedition 357, which used seabed drills to collect continuous sequences of shallow (<16 m below seafloor) marine serpentinites and mafic assemblages. Here, we report the census of microbial diversity in samples of the drill cores, as measured by environmental 16S rRNA gene amplicon sequencing. The problem of contamination of subsurface samples was a primary concern during all stages of this project, starting from the initial study design, continuing to the collection of samples from the seafloor, handling the samples shipboard and in the lab, preparing the samples for DNA extraction, and analyzing the DNA sequence data. To distinguish endemic microbial taxa of serpentinite subsurface rocks from seawater residents and other potential contaminants, the distributions of individual 16S rRNA gene sequences among all samples were evaluated, taking into consideration both presence/absence and relative abundances. Our results highlight a few candidate residents of the shallow serpentinite subsurface, including uncultured representatives of the Thermoplasmata, Acidobacteria, Acidimicrobia, and ChloroflexiIMPORTANCE The International Ocean Discovery Program Expedition 357-"Serpentinization and Life"-utilized seabed drills to collect rocks from the oceanic crust. The recovered rock cores represent the shallow serpentinite subsurface of the Atlantis Massif, where reactions between uplifted mantle rocks and water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Oceano Atlântico , Oceanos e Mares , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
17.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32033949

RESUMO

The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by Chloroflexi populations. Additionally, we present evidence for metabolically diverse, formate-utilizing Sulfurovum populations and new genomic and phylogenetic insights into the unique Lost City MethanosarcinalesIMPORTANCE Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.


Assuntos
Chloroflexi/genética , Formiatos/metabolismo , Genoma Bacteriano , Oceano Atlântico , Carbono/metabolismo , Chloroflexi/metabolismo , Fontes Hidrotermais/microbiologia
18.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180429, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31902336

RESUMO

The Lost City hydrothermal field is a dramatic example of the biological potential of serpentinization. Microbial life is prevalent throughout the Lost City chimneys, powered by the hydrogen gas and organic molecules produced by serpentinization and its associated geochemical reactions. Microbial life in the serpentinite subsurface below the Lost City chimneys, however, is unlikely to be as dense or active. The marine serpentinite subsurface poses serious challenges for microbial activity, including low porosities, the combination of stressors of elevated temperature, high pH and a lack of bioavailable ∑CO2. A better understanding of the biological opportunities and challenges in serpentinizing systems would provide important insights into the total habitable volume of Earth's crust and for the potential of the origin and persistence of life in Earth's subsurface environments. Furthermore, the limitations to life in serpentinizing subsurface environments on Earth have significant implications for the habitability of subsurface environments on ocean worlds such as Europa and Enceladus. Here, we review the requirements and limitations of life in serpentinizing systems, informed by our research at the Lost City and the underwater mountain on which it resides, the Atlantis Massif. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.


Assuntos
Fontes Hidrotermais/química , Minerais/química , Oceanos e Mares , Temperatura , Oligoelementos/química
19.
mSphere ; 4(4)2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462415

RESUMO

We report the first census of natural microbial communities of the Bonneville Salt Flats (BSF), a perennial salt pan at the Utah-Nevada border. Environmental DNA sequencing of archaeal and bacterial 16S rRNA genes was conducted on samples from multiple evaporite sediment layers collected from the upper 30 cm of the surface salt crust. Our results show that at the time of sampling (September 2016), BSF hosted a robust microbial community dominated by diverse halobacteria and Salinibacter species. Sequences identical to Geitlerinema sp. strain PCC 9228, an anoxygenic cyanobacterium that uses sulfide as the electron donor for photosynthesis, are also abundant in many samples. We identified taxonomic groups enriched in each layer of the salt crust sediment and revealed that the upper gypsum sediment layer found immediately under the uppermost surface halite contains a robust microbial community. In these sediments, we found an increased presence of Thermoplasmatales, Hadesarchaeota, Nanoarchaeaeota, Acetothermia, Desulfovermiculus, Halanaerobiales, Bacteroidetes, and Rhodovibrio This study provides insight into the diversity, spatial heterogeneity, and geologic context of a surprisingly complex microbial ecosystem within this macroscopically sterile landscape.IMPORTANCE Pleistocene Lake Bonneville, which covered a third of Utah, desiccated approximately 13,000 years ago, leaving behind the Bonneville Salt Flats (BSF) in the Utah West Desert. The potash salts that saturate BSF basin are extracted and sold as an additive for agricultural fertilizers. The salt crust is a well-known recreational and economic commodity, but the biological interactions with the salt crust have not been studied. This study is the first geospatial analysis of microbially diverse populations at this site using cultivation-independent environmental DNA sequencing methods. Identification of the microbes present within this unique, dynamic, and valued sedimentary evaporite environment is an important step toward understanding the potential consequences of perturbations to the microbial ecology on the surrounding landscape and ecosystem.


Assuntos
Archaea/classificação , Bactérias/classificação , Variação Genética , Microbiota , Filogenia , DNA Bacteriano/genética , Ecossistema , Lagos/química , Lagos/microbiologia , Nevada , RNA Ribossômico 16S/genética , Tolerância ao Sal , Utah
20.
Sci Rep ; 8(1): 755, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335466

RESUMO

Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO2. Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Formiatos/metabolismo , Fontes Hidrotermais/microbiologia , Radioisótopos de Carbono/análise , Metabolismo Energético , Metano/metabolismo , Oxirredução , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA