Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 76(9): 2940-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228105

RESUMO

A highly efficient carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC)-mineralizing bacterium was isolated from enrichment cultures originating from MBC-contaminated soil samples. This bacterium, Nocardioides sp. strain SG-4G, hydrolyzed MBC to 2-aminobenzimidazole, which in turn was converted to the previously unknown metabolite 2-hydroxybenzimidazole. The initial steps of this novel metabolic pathway were confirmed by growth and enzyme assays and liquid chromatography-mass spectrometry (LC-MS) studies. The enzyme responsible for carrying out the first step was purified and subjected to N-terminal and internal peptide sequencing. The cognate gene, named mheI (for MBC-hydrolyzing enzyme), was cloned using a reverse genetics approach. The MheI enzyme was found to be a serine hydrolase of 242 amino acid residues. Its nearest known relative is an uncharacterized hypothetical protein with only 40% amino acid identity to it. Codon optimized mheI was heterologously expressed in Escherichia coli, and the His-tagged enzyme was purified and biochemically characterized. The enzyme has a K(m) and k(cat) of 6.1 muM and 170 min(-1), respectively, for MBC. Radiation-killed, freeze-dried SG-4G cells showed strong and stable MBC detoxification activity suitable for use in enzymatic bioremediation applications.


Assuntos
Benzimidazóis/metabolismo , Carbamatos/metabolismo , Esterases/metabolismo , Bactérias Gram-Positivas/enzimologia , Sequência de Bases , Biodegradação Ambiental , Clonagem Molecular , Esterases/química , Esterases/genética , Bactérias Gram-Positivas/isolamento & purificação , Hidrólise , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA