Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242104

RESUMO

Rapid sea-ice decline and warmer waters are threatening the stability of Arctic ecosystems and potentially forcing their restructuring. Mathematical models that support observational evidence are becoming increasingly important. We develop a food web model for the Southern Beaufort Sea based on species with high ecological significance. Generalized modeling is applied to study the impact of realistic characteristics on food web stability; a powerful method that provides a linear stability analysis for systems with uncertainty in data and underlying physical processes. We find that including predator-specific foraging traits, weighted predator-prey interactions, and habitat constraints increase food-web stability. The absence of a fierce top predator (killer whale, polar bear, etc.) also significantly increases the portion of stable webs. Adding ecosystem background noise in terms of a collective impact of latent, minor ecosystem members shows a peak in stability at an optimum, relatively small background pressure. These results indicate that refining models with more realistic detail to account for the complexity of the ecological system may be key to bridge the gap between empirical observations and model predictions in ecosystem stability.


Assuntos
Cadeia Alimentar , Ursidae , Animais , Ecossistema , Regiões Árticas , Modelos Teóricos
2.
Conserv Physiol ; 11(1): coad084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026798

RESUMO

Geographic differences in population growth trends are well-documented in Steller sea lions (Eumetopias jubatus), a species of North Pacific pinniped listed under the U.S. Endangered Species Act in 1990 following a marked decline in population abundance that began during the 1970s. As population growth is intrinsically linked to pup production and survival, examining factors related to pup physiological condition provides useful information to management authorities regarding potential drivers of regional differences. During dam foraging trips, pups predictably transition among three fasting phases, distinguished by the changes in the predominant metabolic byproduct. We used standardized ranges of two plasma metabolites (blood urea nitrogen and ß-hydroxybutyrate) to assign pups to fasting categories (n = 1528, 1990-2016, 12 subpopulations): Recently Fed-Phase I (digestion/assimilation-expected hepatic/muscle glycogen usage), Phase II (expected lipid utilization), transitioning between Phases II-III (expected lipid utilization with increased protein reliance), or Phase III (expected protein catabolism). As anticipated, the majority of pups were classified as Recently Fed-Phase I (overall mean proportion = 0.72) and few pups as Phase III (overall mean proportion = 0.04). By further comparing pups in Short (Recently Fed-Phase II) and Long (all other pups) duration fasts, we identified three subpopulations with significantly (P < 0.03) greater proportions of pups dependent upon endogenous sources of energy for extended periods, during a life stage of somatic growth and development: the 1) central (0.27 ± 0.09) and 2) western (0.36 ± 0.13) Aleutian Island (declining population trend) and 3) southern Southeast Alaska (0.32 ± 0.06; increasing population trend) subpopulations had greater Long fast proportions than the eastern Aleutian Islands (0.10 ± 0.05; stabilized population). Due to contrasting population growth trends among these highlighted subpopulations over the past 50+ years, both density-independent and density-dependent factors likely influence the dam foraging trip duration, contributing to longer fasting durations for pups at some rookeries.

3.
Am Nat ; 202(3): 351-367, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606942

RESUMO

AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (Halichoerus grypus). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.


Assuntos
Características de História de Vida , Focas Verdadeiras , Feminino , Animais , Teorema de Bayes , Longevidade , Fenótipo
4.
Ecol Evol ; 13(6): e10095, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293121

RESUMO

An individual's size in early stages of life may be an important source of individual variation in lifetime reproductive performance, as size effects on ontogenetic development can have cascading physiological and behavioral consequences throughout life. Here, we explored how size-at-young influences subsequent reproductive performance in gray seals (Halichoerus grypus) using repeated encounter and reproductive data on a marked sample of 363 females that were measured for length after weaning, at ~4 weeks of age, and eventually recruited to the Sable Island breeding colony. Two reproductive traits were considered: provisioning performance (mass of weaned offspring), modeled using linear mixed effects models; and reproductive frequency (rate at which a female returns to breed), modeled using mixed effects multistate mark-recapture models. Mothers with the longest weaning lengths produced pups 8 kg heavier and were 20% more likely to breed in a given year than mothers with the shortest lengths. Correlation in body lengths between weaning and adult life stages, however, is weak: Longer pups do not grow to be longer than average adults. Thus, covariation between weaning length and future reproductive performance appears to be a carry-over effect, where the size advantages afforded in early juvenile stages may allow enhanced long-term performance in adulthood.

5.
Chaos ; 33(3): 033130, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003835

RESUMO

The complexity of real food webs involves uncertainty in data and in underlying ecological processes, and modeling approaches deal with these challenges differently. Generalized modeling provides a linear stability analysis without narrow specification of all processes, and conventional dynamical systems models approximate functional forms to discuss trajectories in phase space. This study compares results and ecological interpretations from both methods in four-species ecological networks at steady state. We find that a specific (dynamical systems) model only provides a subset of stability data from the generalized model, which spans many plausible dynamic scenarios, allowing for conflicting results. Nevertheless, both approaches reveal that fixed points become stable when nutrient flows to predators are fettered and even more when the basal growth rate approaches a maximum. The specific model identifies a distinct ecosystem response to bottom-up forcing, the enrichment of lower trophic levels. Enrichment stabilizes a fixed point when basal species are in a resource-deprived environment but destabilizes it if resources become more abundant. The generalized model provides less specific information since infinitely many paths of enrichment are hypothetical. Nevertheless, generalized modeling of ecological systems is a powerful technique that enables a meta analysis of these uncertain complex systems.


Assuntos
Ecossistema , Cadeia Alimentar , Incerteza
6.
Ecol Evol ; 13(3): e9847, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36993148

RESUMO

Recent empirical studies have quantified correlation between survival and recovery by estimating these parameters as correlated random effects with hierarchical Bayesian multivariate models fit to tag-recovery data. In these applications, increasingly negative correlation between survival and recovery has been interpreted as evidence for increasingly additive harvest mortality. The power of these hierarchal models to detect nonzero correlations has rarely been evaluated, and these few studies have not focused on tag-recovery data, which is a common data type. We assessed the power of multivariate hierarchical models to detect negative correlation between annual survival and recovery. Using three priors for multivariate normal distributions, we fit hierarchical effects models to a mallard (Anas platyrhychos) tag-recovery data set and to simulated data with sample sizes corresponding to different levels of monitoring intensity. We also demonstrate more robust summary statistics for tag-recovery data sets than total individuals tagged. Different priors led to substantially different estimates of correlation from the mallard data. Our power analysis of simulated data indicated most prior distribution and sample size combinations could not estimate strongly negative correlation with useful precision or accuracy. Many correlation estimates spanned the available parameter space (-1,1) and underestimated the magnitude of negative correlation. Only one prior combined with our most intensive monitoring scenario provided reliable results. Underestimating the magnitude of correlation coincided with overestimating the variability of annual survival, but not annual recovery. The inadequacy of prior distributions and sample size combinations previously assumed adequate for obtaining robust inference from tag-recovery data represents a concern in the application of Bayesian hierarchical models to tag-recovery data. Our analysis approach provides a means for examining prior influence and sample size on hierarchical models fit to capture-recapture data while emphasizing transferability of results between empirical and simulation studies.

7.
Proc Biol Sci ; 289(1981): 20220895, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043278

RESUMO

To increase the probability of detecting odour plumes, and so increase prey capture success, when winds are stable central place foraging seabirds should fly crosswind to maximize the round-trip distance covered. At present, however, there is no empirical evidence of this theoretical prediction. Here, using an extensive GPS tracking dataset, we investigate, for the first time, the foraging movements of Bulwer's petrels (Bulweria bulwerii) in the persistent North Atlantic trade winds. To test the hypotheses that, in stable winds, petrels use crosswind to maximize both the distance covered and the probability of detecting olfactory cues, we combine state-space models, generalized additive models and Gaussian plume models. Bulwer's petrels had the highest degree of selectivity for crosswinds documented to date, often leading to systematic zig-zag flights. Crosswinds maximized both the distance travelled and the probability of detecting odour plumes integrated across the round-trip (rather than at any given point along the route, which would result in energetically costly return flight). This evidence suggests that petrels plan round-trip flights at departure, integrating expected costs of homeward journeys. Our findings, which are probably true for other seabirds in similar settings, further highlight the critical role of wind in seabird foraging ecology.


Assuntos
Aves , Comportamento Alimentar , Animais , Sinais (Psicologia) , Olfato , Vento
8.
Ecol Appl ; 32(4): e2542, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35137484

RESUMO

In populations across many taxa, a large fraction of sexually mature individuals do not breed but are attempting to enter the breeding population. Such individuals, often referred to as "floaters," can play critical roles in the dynamics and stability of these populations and buffer them through periods of high adult mortality. Floaters are difficult to study, however, so we lack data needed to understand their roles in the population ecology and conservation status of many species. Here, we analyzed satellite telemetry data with a newly developed mechanistic space use model based on an Ornstein-Uhlenbeck process to help overcome the paucity of data in studying the differential habitat selection and space use of floater and territorial golden eagles Aquila chrysaetos. Our sample consisted of 49 individuals tracked over complete breeding seasons across 4 years, totaling 104 eagle breeding seasons. Modeling these data mechanistically was required to disentangle key differences in movement and particularly to separate aspects of movement driven by resource selection from those driven by use of a central place. We found that floaters generally had more expansive space use patterns and larger home ranges, as well as evidence that they partition space with territorial individuals seemingly on fine scales through differential habitat and resource selection. Floater and territorial eagle home ranges overlapped markedly, suggesting that floaters use the interstices between territories. Furthermore, floater and territorial eagles differed in how they selected for uplift variables, key components of soaring birds' energy landscape, with territorial eagles apparently better able to find and use thermal uplift. We also found relatively low individual heterogeneity in resource selection, especially among territorial individuals, suggesting a narrow realized niche for breeding individuals, which varied from the level of among-individual variation present during migration. This work furthers our understanding of floaters' potential roles in the population ecology of territorial species and suggests that conserving landscapes occupied by territorial eagles also protects floaters.


Assuntos
Águias , Animais , Demografia , Ecologia , Ecossistema , Humanos , Estações do Ano
9.
J Anim Ecol ; 91(2): 345-355, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741333

RESUMO

Longitudinal studies of marked animals provide an opportunity to assess the relative contributions of survival and reproductive output to population dynamics and change. Cassin's auklets are a long-lived seabird that maximizes annual reproductive effort in resource-rich years through a behaviour called double brooding, the initiation of a second breeding attempt following the success of the first during the same season. Our objective was to explore whether double brooding influenced population change by contributing a greater number of future recruits. We fit temporal symmetry models to 32 years of mark-recapture data of Cassin's auklets to infer the mechanisms underlying the observed variability in per capita recruitment rates. We found that periodic peaks in recruitment were explained by an increase in available nest sites, the proportion of the population double brooding 4 years prior, and spring upwelling conditions. Estimates of population change suggests a relatively stable population throughout the time series, attributable to a 'floating' demographic class of sexually mature individuals excluded from breeding by competition which quickly fill vacant sites following periods of low adult survival. Our results highlight the importance of recruitment in maintaining the population of a long-lived seabird periodically impacted by adverse environmental conditions.


Assuntos
Charadriiformes , Clima , Animais , Dinâmica Populacional , Reprodução , Estações do Ano
10.
Mov Ecol ; 9(1): 54, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724991

RESUMO

BACKGROUND: Migrations in temperate systems typically have two migratory phases, spring and autumn, and many migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route. METHODS: We analyzed autumn migrations of Arctic barren-ground caribou (Rangifer tarandus) as a series of persistent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-parameter movement model at the individual-level and estimated annual population-level parameters for weather covariates on 389 individual-seasons across 9 years. RESULTS: Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migratory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resulted in diverse environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns. CONCLUSIONS: By analyzing autumn migration as a continuous process across the entire migration period, we found that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their movements throughout their annual cycle. These insights have implications for how long-distance migratory patterns may change as the Arctic climate continues to warm.

11.
Proc Biol Sci ; 288(1947): 20202817, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726591

RESUMO

Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem.


Assuntos
Ecossistema , Focas Verdadeiras , Animais , Comportamento Alimentar , Oceanos e Mares , Comportamento Predatório , Estações do Ano
12.
Oecologia ; 195(4): 887-899, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33683443

RESUMO

Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.


Assuntos
Ecossistema , Neve , Animais , Regiões Árticas , Estações do Ano , Tundra
13.
Chaos ; 31(2): 023106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33653073

RESUMO

The stability of ecological networks of varying topologies and predator-prey relationships is explored by applying the concept of generalized modeling. The effects of omnivory, complexity, enrichment, number of top predators, and predatory response are discussed. The degree of omnivory plays a large role in governing web stability at steady state. Complexity as measured from connectance and network size is not a perfect indicator of stability; large, highly connected webs can be just as stable as smaller, less connected ones. Learning behavior as expressed in Holling's type III predatory response is stabilizing for food webs and provides exceptions to the paradox of enrichment for some topologies.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Modelos Biológicos , Modelos Teóricos
15.
J Anim Ecol ; 89(11): 2567-2583, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926415

RESUMO

Human modification of landscapes includes extensive addition of linear features, such as roads and transmission lines. These can alter animal movement and space use and affect the intensity of interactions among species, including predation and competition. Effects of linear features on animal movement have seen relatively little research in avian systems, despite ample evidence of their effects in mammalian systems and that some types of linear features, including both roads and transmission lines, are substantial sources of mortality. Here, we used satellite telemetry combined with step selection functions designed to explicitly incorporate the energy landscape (el-SSFs) to investigate the effects of linear features and habitat on movements and space use of a large soaring bird, the golden eagle Aquila chrysaetos, during migration. Our sample consisted of 32 adult eagles tracked for 45 spring and 39 fall migrations from 2014 to 2017. Fitted el-SSFs indicated eagles had a strong general preference for south-facing slopes, where thermal uplift develops predictably, and that these areas are likely important aspects of migratory pathways. el-SSFs also provided evidence that roads and railroads affected movement during both spring and fall migrations, but eagles selected areas near roads to a greater degree in spring compared to fall and at higher latitudes compared to lower latitudes. During spring, time spent near linear features often occurred during slower-paced or stopover movements, perhaps in part to access carrion produced by vehicle collisions. Regardless of the behavioural mechanism of selection, use of these features could expose eagles and other soaring species to elevated risk via collision with vehicles and/or transmission lines. Linear features have previously been documented to affect the ecology of terrestrial species (e.g. large mammals) by modifying individuals' movement patterns; our work shows that these effects on movement extend to avian taxa.


Assuntos
Águias , Voo Animal , Animais , Ecologia , Ecossistema , Telemetria
16.
Proc Natl Acad Sci U S A ; 117(12): 6590-6598, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152110

RESUMO

The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked prey, bowhead whales (Balaena mysticetus; n = 7), and predator, killer whales (Orcinus orca; n = 3), in a large (63,000 km2), partially ice-covered gulf in the Canadian Arctic. Our analysis revealed pronounced predator-mediated shifts in prey habitat use and behavior over much larger spatiotemporal scales than previously documented in any marine or terrestrial ecosystem. The striking shift from use of open water (predator-free) to dense sea ice and shorelines (predators present) was exhibited gulf-wide by all tracked bowheads during the entire 3-wk period killer whales were present, constituting a nonconsumptive effect (NCE) with unknown energetic or fitness costs. Sea ice is considered quintessential habitat for bowhead whales, and ice-covered areas have frequently been interpreted as preferred bowhead foraging habitat in analyses that have not assessed predator effects. Given the NCEs of apex predators demonstrated here, however, unbiased assessment of habitat use and distribution of bowhead whales and many marine species may not be possible without explicitly incorporating spatiotemporal distribution of predation risk. The apparent use of sea ice as a predator refuge also has implications for how bowhead whales, and likely other ice-associated Arctic marine mammals, will cope with changes in Arctic sea ice dynamics as historically ice-covered areas become increasingly ice-free during summer.


Assuntos
Baleia Franca/fisiologia , Ecossistema , Camada de Gelo , Orca/fisiologia , Animais , Regiões Árticas , Canadá , Biologia Marinha , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório
17.
Ecology ; 101(6): e03024, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083735

RESUMO

Individual variation in reproductive ability is a key component of natural selection within populations, driving the evolution of life histories and population responses to changing environmental conditions. Evidence that population density affects individual-level fitness in wild populations is limited, particularly for long-lived animals, which are difficult to observe on a biologically relevant scale. We tested for individual heterogeneity in reproductive performance in female grey seals (Halichoerus grypus) using 35 yr of mark-resighting data at Sable Island, Canada (43.93° N 59.91° W). We used Bayesian generalized linear mixed-effect models and multistate open robust design mark-resight models to investigate whether population size negatively influences individual reproductive performance. We measured reproductive performance in two ways: reproductive frequency (the probability of returning to the island to breed) and annual provisioning performance (the probability of successfully weaning a pup given a female bred). Sighting histories of 1,655 known-aged females with a total of 22,961 pupping events were used for analysis. After accounting for effects of female age, parity, and random year effects, we found that both provisioning performance and reproductive frequency demonstrated a strong, positive correlation with population size. Among-individual variance in reproductive traits and responses to population size indicated considerable heterogeneity in overall reproductive performance. As population size grew, "robust" females increased their reproductive performance more than their more "frail" conspecifics in both reproductive traits, resulting in an amplification of differences among individuals. Consequently, simulations from posterior distributions revealed a large fitness consequence of heterogeneity in this population, with "frail" individuals having 47.1% fewer successful pups than more "robust" females (mean reproductive output ± SD: 9.12 ± 3.77 pups for frail individuals, 16.97 ± 2.94 for robust individuals). Repeatability of overall reproductive performance across environments indicates individual quality may be more influential to lifetime reproductive success than costs associated with reproductive investment. This quantification of relative fitness and its dynamics is crucial to understanding broad evolutionary processes in natural populations.


Assuntos
Reprodução , Focas Verdadeiras , Animais , Teorema de Bayes , Canadá , Feminino , Humanos , Densidade Demográfica
18.
Ecol Appl ; 30(3): e02068, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872516

RESUMO

Reduced prey abundance and severe weather can lead to a greater risk of mortality for seabirds during the non-breeding winter months. Resource patterns in some regions are shifting and becoming more variable in relation to past conditions, potentially further impacting survival and carryover to the breeding season. As animal tracking technologies and methods to analyze movement data have advanced, it has become increasingly feasible to draw fine-scale inference about how environmental variation affects foraging behavior and habitat use of seabirds during this critical period. Here, we used archival light-sensing tags to evaluate how interannual variation in oceanography affected the winter distribution of Cassin's Auklets from Southeast Farallon Island, California. Thirty-five out of 93 geolocators deployed from 2015 to 2017 were recovered and successfully recorded light-level data, from which geographic positions were estimated. Step-selection functions were applied to identify environmental covariates that best explained winter movement decisions and habitat use, revealing Cassin's Auklets dispersed farther from the colony during a winter with warm SST anomalies, but remained more centralized near the breeding colony during two average winters. Movement patterns were driven by avoidance of areas with higher sea surface temperatures and possible limits of dispersal from the breeding colony, and selection for areas with well-defined mesoscale fronts and cooler surface waters. Through multiple years of tagging and the application of step-selection functions, a robust and widely applied approach for analyzing animal movement in terrestrial species, we show how interannual differences in the movement patterns of a small seabird are driven by oceanographic variability across years. Understanding the winter habitat use of seabirds can help inform changes in population structure and measures of reproductive success, aiding managers in determining potential causes of breeding failures.


Assuntos
Charadriiformes , Animais , Cruzamento , Ecossistema , Oceanografia , Estações do Ano
19.
Sci Rep ; 9(1): 5221, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914781

RESUMO

Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur and the start date of each animal's moult was back-calculated. Reproductive success and parturition dates were obtained for the breeding season prior to and following the moult. We found that successful reproduction delayed moult by 16 days relative to non-parturient females. Phenology of the intervening moult was indicative of previous reproductive dynamics but not predictive of subsequent reproductive outcomes. Across years, moult phenology varied by about two weeks and covaried strongly with sea ice break-out timing for all reproductive categories. Our findings suggest these polar mammals have some flexibility within the annual cycle that allows adjustment of moult phenology to fluctuating environmental conditions without compromising future reproductive success.


Assuntos
Mudança Climática , Reprodução/fisiologia , Focas Verdadeiras/fisiologia , Animais , Regiões Árticas , Feminino , Masculino
20.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404876

RESUMO

For migrating animals, realized migration routes and timing emerge from hundreds or thousands of movement decisions made along migration routes. Local weather conditions along migration routes continually influence these decisions, and even relatively small changes in en route weather may cumulatively result in major shifts in migration patterns. Here, we analysed satellite tracking data to score a discrete navigation decision by a large migratory bird as it navigated a high-latitude, 5000 m elevation mountain range to understand how those navigational decisions changed under different weather conditions. We showed that wind conditions in particular areas along the migration pathway drove a navigational decision to reroute a migration; conditions encountered predictably resulted in migrants routing either north or south of the mountain range. With abiotic conditions continuing to change globally, simple decisions, such as the one described here, might additively emerge into new, very different migration routes.


Assuntos
Migração Animal , Águias/fisiologia , Tempo (Meteorologia) , Alaska , Animais , Modelos Biológicos , Tecnologia de Sensoriamento Remoto/veterinária , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA