Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 3(1): 21-31, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36817006

RESUMO

For the detection of electrochemically produced hydroxyl radicals (HO·) from the oxidation of water on a boron-doped diamond (BDD) electrode, electron paramagnetic resonance spectroscopy (EPR) in combination with spin trap labels is a popular technique. Here, we show that quantification of the concentration of HO· from water oxidation via spin trap electrochemical (EC)-EPR is problematic. This is primarily due to the spin trap oxidizing at potentials less positive than water, resulting in the same spin trap-OH· adduct as formed from the solution reaction of OH· with the spin trap. We illustrate this through consideration of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap for OH·. DMPO oxidation on a BDD electrode in an acidic aqueous solution occurs at a peak current potential of +1.90 V vs SCE; the current for water oxidation starts to rise rapidly at ca. +2.3 V vs SCE. EC-EPR spectra show signatures due to the spin trap adduct (DMPO-OH·) at potentials lower than that predicted thermodynamically (for water/HO·) and in the region for DMPO oxidation. Increasing the potential into the water oxidation region, surprisingly, shows a lower DMPO-OH· concentration than when the potential is in the DMPO oxidation region. This behavior is attributed to further oxidation of DMPO-OH·, production of fouling products on the electrode surface, and bubble formation. Radical scavengers (ethanol) and other spin traps, here N-tert-butyl-α-phenylnitrone, α-(4-pyridyl N-oxide)-N-tert-butylnitrone, and 2-methyl-2-nitrosopropane dimer, also show electrochemical oxidation signals less positive than that of water on a BDD electrode. Such behavior also complicates their use for the intended application.

2.
Chem Commun (Camb) ; 57(1): 69-72, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337460

RESUMO

The stable complex [bis(toluene-3,4-dithiolato)copper(iii)][NEt3H] has been synthesised and characterised as a square-planar Cu(iii) complex by X-ray photoelectron spectroscopy, cyclic voltammetry and DFT calculations. Intriguingly, when fragmented in FTICR-MS, an unusual [(toluene-3,4-dithiolate)Cu(iii)(peroxide)]- complex is formed by reaction with oxygen. Natural 1,2-dithiolenes known to bind molybdenum might stabilise Cu(iii) in vivo.

3.
Nanoscale ; 12(42): 21757-21769, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33094776

RESUMO

By changing the mole fraction of water (χwater) in the solvent acetonitrile (MeCN), we report a simple procedure to control nanostructure morphology during electrodeposition. We focus on the electrodeposition of palladium (Pd) on electron beam transparent boron-doped diamond (BDD) electrodes. Three solutions are employed, MeCN rich (90% v/v MeCN, χwater = 0.246), equal volumes (50% v/v MeCN, χwater = 0.743) and water rich (10% v/v MeCN, χwater = 0.963), with electrodeposition carried out under a constant, and high overpotential (-1.0 V), for fixed time periods (50, 150 and 300 s). Scanning transmission electron microscopy (STEM) reveals that in MeCN rich solution, Pd atoms, amorphous atom clusters and (majority) nanoparticles (NPs) result. As water content is increased, NPs are again evident but also elongated and defected nanostructures which grow in prominence with time. In the water rich environment, NPs and branched, concave and star-like Pd nanostructures are now seen, which with time translate to aggregated porous structures and ultimately dendrites. We attribute these observations to the role MeCN adsorption on Pd surfaces plays in retarding metal nucleation and growth.

4.
J Phys Chem Lett ; 11(16): 6677-6683, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32680426

RESUMO

Atomic-scale defects can control the exploitable optoelectronic performance of crystalline materials, and several point defects in diamond are emerging functional components for a range of quantum technologies. Nitrogen and hydrogen are common impurities incorporated into diamond, and there is a family of defects that includes both. The N3VH0 defect is a lattice vacancy where three nearest neighbor carbon atoms are replaced with nitrogen atoms and a hydrogen is bonded to the remaining carbon. It is regularly observed in natural and high-temperature annealed synthetic diamond and gives rise to prominent absorption features in the mid-infrared. Here, we combine time- and spectrally resolved infrared absorption spectroscopy to yield unprecedented insight into the N3VH0 defect's vibrational dynamics following infrared excitation of the C-H stretch. In doing so, we gain fundamental information about the energies of quantized vibrational states and corroborate our results with theory. We map out, for the first time, energy relaxation pathways, which include multiphonon relaxation processes and anharmonic coupling to the C-H bend mode. These advances provide new routes to quantify and probe atomic-scale defects.

5.
Chem Sci ; 11(21): 5466-5480, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34094073

RESUMO

Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(iii) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS- attack on the azo bond facilitates the substitution of iodide by GS-, and leads to formation of GSSG and superoxide if O2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA