Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 157: 111247, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761558

RESUMO

Filamentous fungi are used in the dairy industry as adjunct cultures in fermented products, but can also lead to food spoilage, waste and economic losses. The control of filamentous fungi with abiotic factors contributes to longer food shelf life and prevention of fungal spoilage. One of the main abiotic factors for controlling fungal growth in foods is water activity (aw). This study aimed to evaluate radial growth as a function of aw for sixteen fungal adjuncts and/or spoilers isolated from dairy products or a dairy environment. Glycerol (a non-ionic compound) and sodium chloride (NaCl, an ionic compound) were used to adjust the aw of culture media. This study showed significant diversity in the responses of the tested fungal strains as a function of medium aw. The growth response of Penicillium bialowiezense and Sporendonema casei was binary, with no clear decrease of growth rate until the growth limit, when the aw was reduced. For the strains of Bisifusarium domesticum, Mucor circinelloides and Penicillium camemberti, a decrease of aw had the same impact on radial growth rate regardless of the aw belonging to their growth range. For the strains of Aspergillus flavus, Cladosporium herbarum, Geotrichum candidum, Mucor lanceolatus, Penicillium expansum, Penicillium fuscoglaucum, Penicillium nalgiovense, Paecilomyces niveus, Penicillium roqueforti, Penicillium solitum and Scopulariopsis asperula, the impact of a decrease in aw was more pronounced at high aw than at low aw. A mathematical model was suggested to describe this impact on the radial growth rate. For all tested species, radial growth was more sensitive to NaCl than glycerol. The ionic strength of NaCl mainly explains the difference in the effects of the two solutes.


Assuntos
Cloreto de Sódio , Água , Laticínios/microbiologia , Glicerol , Cloreto de Sódio/farmacologia
2.
Int J Food Microbiol ; 313: 108377, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31670166

RESUMO

The ability of three Penicillium expansum isolates to produce patulin was first evaluated in YES medium after incubation at 25 °C to select a high patulin producer. Then, a spore suspension of the selected P. expansum 3.78 strain was inoculated onto the surface of Golden delicious apples and incubated at 8 or 20 °C until the mold lesion reached a diameter of 1, 2 or 3 cm. For each lesion size, patulin was quantified from apple samples cut into 1 cm depthwise fractions and widthwise sized cylinders. Maximum patulin concentration, about 80,000 ng/g apple, was obtained at 8 °C for the center and surface sample of the 3 cm diameter lesion. Patulin was systematically found at the highest concentration in the lesions, but still quantified up to one centimeter next to the lesion. Patulin concentrations were not significantly different between the 8 and 20 °C incubation temperature, except for the 3 cm large lesions. Based on these findings, and for lesions less than or equal to 3 cm in diameter, we recommend to consumers to cut off at least 1 cm around and below the mold spot to limit patulin exposure. Apples should also be stored at cool temperatures, below 8 °C, to delay lesion development.


Assuntos
Armazenamento de Alimentos/métodos , Frutas/química , Malus/microbiologia , Patulina/análise , Penicillium/metabolismo , Armazenamento de Alimentos/instrumentação , Frutas/microbiologia , Malus/química , Patulina/biossíntese , Penicillium/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA