Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199922

RESUMO

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Evolução Biológica , Humanos , Filogenia
2.
Nat Commun ; 11(1): 2463, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424113

RESUMO

An organism's ability to disperse influences many fundamental processes, from speciation and geographical range expansion to community assembly. However, the patterns and underlying drivers of variation in dispersal across species remain unclear, partly because standardised estimates of dispersal ability are rarely available. Here we present a global dataset of avian hand-wing index (HWI), an estimate of wing shape widely adopted as a proxy for dispersal ability in birds. We show that HWI is correlated with geography and ecology across 10,338 (>99%) species, increasing at higher latitudes and with migration, and decreasing with territoriality. After controlling for these effects, the strongest predictor of HWI is temperature variability (seasonality), with secondary effects of diet and habitat type. Finally, we also show that HWI is a strong predictor of geographical range size. Our analyses reveal a prominent latitudinal gradient in HWI shaped by a combination of environmental and behavioural factors, and also provide a global index of avian dispersal ability for use in community ecology, macroecology, and macroevolution.


Assuntos
Migração Animal/fisiologia , Aves/anatomia & histologia , Ecossistema , Asas de Animais/anatomia & histologia , Animais , Filogeografia
3.
Nat Ecol Evol ; 4(2): 230-239, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932703

RESUMO

Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.


Assuntos
Aves , Ecossistema , Animais , Evolução Biológica , Ecologia , Filogenia
4.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27928045

RESUMO

Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change.


Assuntos
Biodiversidade , Aves/classificação , Florestas , Clima Tropical , Animais , Cadeia Alimentar , Herbivoria , Atividades Humanas , Humanos , Insetos , Dispersão de Sementes
5.
Ecology ; 96(10): 2692-704, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649390

RESUMO

Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects.


Assuntos
Biodiversidade , Aves/classificação , Florestas , Clima Tropical , Animais , Cadeia Alimentar
6.
PLoS One ; 10(5): e0123952, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946032

RESUMO

The conversion of forest to agriculture across the world's tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities.


Assuntos
Biodiversidade , Planejamento Ambiental , Ficus/fisiologia , Florestas , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA