Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
2.
Sci Rep ; 14(1): 4922, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418494

RESUMO

Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Prognóstico , Imageamento por Ressonância Magnética/métodos , Genômica
3.
Nat Cancer ; 5(3): 517-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216766

RESUMO

We previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII+ glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed. Secondary outcomes included median progression-free survival (5.2 months; 90% confidence interval (CI), 2.9-6.0 months) and median overall survival (11.8 months; 90% CI, 9.2-14.2 months). In exploratory analyses, comparison of the TME in tumors harvested before versus after CAR + aPD1 administration demonstrated substantial evolution of the infiltrating myeloid and T cells, with more exhausted, regulatory, and interferon (IFN)-stimulated T cells at relapse. Our study suggests that the combination of CAR T cells and PD-1 inhibition in GBM is safe and biologically active but, given the lack of efficacy, also indicates a need to consider alternative strategies.


Assuntos
Anticorpos Monoclonais Humanizados , Glioblastoma , Humanos , Glioblastoma/terapia , Receptores ErbB , Recidiva Local de Neoplasia/metabolismo , Linfócitos T , Microambiente Tumoral
4.
Nat Commun ; 14(1): 7346, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963886

RESUMO

Genomic DNA (gDNA) undergoes structural interconversion between single- and double-stranded states during transcription, DNA repair and replication, which is critical for cellular homeostasis. We describe "CHEX-seq" which identifies the single-stranded DNA (ssDNA) in situ in individual cells. CHEX-seq uses 3'-terminal blocked, light-activatable probes to prime the copying of ssDNA into complementary DNA that is sequenced, thereby reporting the genome-wide single-stranded chromatin landscape. CHEX-seq is benchmarked in human K562 cells, and its utilities are demonstrated in cultures of mouse and human brain cells as well as immunostained spatially localized neurons in brain sections. The amount of ssDNA is dynamically regulated in response to perturbation. CHEX-seq also identifies single-stranded regions of mitochondrial DNA in single cells. Surprisingly, CHEX-seq identifies single-stranded loci in mouse and human gDNA that catalyze porphyrin metalation in vitro, suggesting a catalytic activity for genomic ssDNA. We posit that endogenous DNA enzymatic activity is a function of genomic ssDNA.


Assuntos
Reparo do DNA , DNA de Cadeia Simples , Humanos , DNA de Cadeia Simples/genética , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genômica , Replicação do DNA
5.
Neurooncol Adv ; 5(1): vdad085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554222

RESUMO

Background: Mutations in mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2) are associated with microsatellite instability and a hypermutator phenotype in numerous systemic cancers, and germline MMR mutations have been implicated in multi-organ tumor syndromes. In gliomas, MMR mutations can function as an adaptive response to alkylating chemotherapy, although there are well-documented cases of germline and sporadic mutations, with detrimental effects on patient survival. Methods: The clinical, pathologic, and molecular features of 18 IDH-mutant astrocytomas and 20 IDH-wild-type glioblastomas with MMR mutations in the primary tumor were analyzed in comparison to 361 IDH-mutant and 906 IDH-wild-type tumors without MMR mutations. In addition, 12 IDH-mutant astrocytomas and 18 IDH-wild-type glioblastomas that developed MMR mutations between initial presentation and tumor recurrence were analyzed in comparison to 50 IDH-mutant and 104 IDH-wild-type cases that remained MMR-wild-type at recurrence. Results: In both IDH-mutant astrocytoma and IDH-wild-type glioblastoma cohorts, the presence of MMR mutation in primary tumors was associated with significantly higher tumor mutation burden (TMB) (P < .0001); however, MMR mutations only resulted in worse overall survival in the IDH-mutant astrocytomas (P = .0069). In addition, gain of MMR mutation between the primary and recurrent surgical specimen occurred more frequently with temozolomide therapy (P = .0073), and resulted in a substantial increase in TMB (P < .0001), higher grade (P = .0119), and worse post-recurrence survival (P = .0022) in the IDH-mutant astrocytoma cohort. Conclusions: These results suggest that whether present initially or in response to therapy, MMR mutations significantly affect TMB but appear to only influence the clinical outcome in IDH-mutant astrocytoma subsets.

6.
J Neurooncol ; 163(1): 173-183, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129737

RESUMO

PURPOSE: Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS: Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS: Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION: Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética Multiparamétrica , Vacinas , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Células Dendríticas
7.
Clin Cancer Res ; 29(14): 2588-2592, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37227179

RESUMO

The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudoprogression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrating into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early posttreatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/patologia , Imagem de Tensor de Difusão , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
8.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215003

RESUMO

Visualization of fiber tracts around the tumor is critical for neurosurgical planning and preservation of crucial structural connectivity during tumor resection. Biophysical modeling approaches estimate fiber tract orientations from differential water diffusivity information of diffusion MRI. However, the presence of edema and tumor infiltration presents a challenge to visualize crossing fiber tracts in the peritumoral region. Previous approaches proposed free water modeling to compensate for the effect of water diffusivity in edema, but those methods were limited in estimating complex crossing fiber tracts. We propose a new cascaded multi-compartment model to estimate tissue microstructure in the presence of edema and pathological contaminants in the area surrounding brain tumors. In our model (COMPARI), the isotropic components of diffusion signal, including free water and hindered water, were eliminated, and the fiber orientation distribution (FOD) of the remaining signal was estimated. In simulated data, COMPARI accurately recovered fiber orientations in the presence of extracellular water. In a dataset of 23 patients with highly edematous brain tumors, the amplitudes of FOD and anisotropic index distribution within the peritumoral region were higher with COMPARI than with a recently proposed multi-compartment constrained deconvolution model. In a selected patient with metastatic brain tumor, we demonstrated COMPARI's ability to effectively model and eliminate water from the peritumoral region. The white matter bundles reconstructed with our model were qualitatively improved compared to those of other models, and allowed the identification of crossing fibers. In conclusion, the removal of isotropic components as proposed with COMPARI improved the bio-physical modeling of dMRI in edema, thus providing information on crossing fibers, thereby enabling improved tractography in a highly edematous brain tumor. This model may improve surgical planning tools to help achieve maximal safe resection of brain tumors.

9.
Brain Commun ; 5(2): fcad040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895956

RESUMO

Adult diffuse gliomas are among the most difficult brain disorders to treat in part due to a lack of clarity regarding the anatomical origins and mechanisms of migration of the tumours. While the importance of studying networks of glioma spread has been recognized for at least 80 years, the ability to carry out such investigations in humans has emerged only recently. Here, we comprehensively review the fields of brain network mapping and glioma biology to provide a primer for investigators interested in merging these areas of inquiry for the purposes of translational research. Specifically, we trace the historical development of ideas in both brain network mapping and glioma biology, highlighting studies that explore clinical applications of network neuroscience, cells-of-origin of diffuse glioma and glioma-neuronal interactions. We discuss recent research that has merged neuro-oncology and network neuroscience, finding that the spatial distribution patterns of gliomas follow intrinsic functional and structural brain networks. Ultimately, we call for more contributions from network neuroimaging to realize the translational potential of cancer neuroscience.

11.
Neuro Oncol ; 25(6): 1085-1097, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640127

RESUMO

BACKGROUND: MDNA55 is an interleukin 4 receptor (IL4R)-targeting toxin in development for recurrent GBM, a universally fatal disease. IL4R is overexpressed in GBM as well as cells of the tumor microenvironment. High expression of IL4R is associated with poor clinical outcomes. METHODS: MDNA55-05 is an open-label, single-arm phase IIb study of MDNA55 in recurrent GBM (rGBM) patients with an aggressive form of GBM (de novo GBM, IDH wild-type, and nonresectable at recurrence) on their 1st or 2nd recurrence. MDNA55 was administered intratumorally as a single dose treatment (dose range of 18 to 240 ug) using convection-enhanced delivery (CED) with up to 4 stereo-tactically placed catheters. It was co-infused with a contrast agent (Gd-DTPA, Magnevist®) to assess distribution in and around the tumor margins. The flow rate of each catheter did not exceed 10µL/min to ensure that the infusion duration did not exceed 48 h. The primary endpoint was mOS, with secondary endpoints determining the effects of IL4R status on mOS and PFS. RESULTS: MDNA55 showed an acceptable safety profile at doses up to 240 µg. In all evaluable patients (n = 44) mOS was 11.64 months (80% one-sided CI 8.62, 15.02) and OS-12 was 46%. A subgroup (n = 32) consisting of IL4R High and IL4R Low patients treated with high-dose MDNA55 (>180 ug) showed the best benefit with mOS of 15 months, OS-12 of 55%. Based on mRANO criteria, tumor control was observed in 81% (26/32), including those patients who exhibited pseudo-progression (15/26). CONCLUSIONS: MDNA55 demonstrated tumor control and promising survival and may benefit rGBM patients when treated at high-dose irrespective of IL4R expression level.Trial Registration: Clinicaltrials.gov NCT02858895.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptores de Interleucina-4/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
13.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634606

RESUMO

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Adulto , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sistema Nervoso Central , Mutação
14.
Sci Rep ; 13(1): 963, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653382

RESUMO

In malignant primary brain tumors, cancer cells infiltrate into the peritumoral brain structures which results in inevitable recurrence. Quantitative assessment of infiltrative heterogeneity in the peritumoral region, the area where biopsy or resection can be hazardous, is important for clinical decision making. Here, we derive a novel set of Artificial intelligence (AI)-based markers capturing the heterogeneity of tumor infiltration, by characterizing free water movement restriction in the peritumoral region using Diffusion Tensor Imaging (DTI)-based free water volume fraction maps. We leverage the differences in the peritumoral region of metastasis and glioblastomas, the former consisting of vasogenic versus the latter containing infiltrative edema, to extract a voxel-wise deep learning-based peritumoral microenvironment index (PMI). Descriptive characteristics of locoregional hubs of uniformly high PMI values are then extracted as AI-based markers to capture distinct aspects of infiltrative heterogeneity. The proposed markers are utilized to stratify patients' survival and IDH1 mutation status on a population of 275 adult-type diffuse gliomas (CNS WHO grade 4). Our results show significant differences in the proposed markers between patients with different overall survival and IDH1 mutation status (t test, Wilcoxon rank sum test, linear regression; p < 0.01). Clustering of patients using the proposed markers reveals distinct survival groups (logrank; p < 10-5, Cox hazard ratio = 1.82; p < 0.005). Our findings provide a panel of markers as surrogates of infiltration that might capture novel insight about underlying biology of peritumoral microstructural heterogeneity, providing potential biomarkers of prognosis pertaining to survival and molecular stratification, with applicability in clinical decision making.


Assuntos
Edema Encefálico , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Imagem de Tensor de Difusão , Inteligência Artificial , Edema Encefálico/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Microambiente Tumoral
15.
Br J Neurosurg ; 37(4): 619-623, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32009484

RESUMO

Intraoperative distinction of lesional tissue versus normal brain parenchyma can be difficult in neurosurgical oncology procedures. We report the successful, real-time visualization of central nervous system (CNS) lymphoma using the 'Second Window Indocyanine Green' (SWIG) method for two patients who underwent craniotomy for pathology that was determined to be large B cell lymphoma. Indocyanine green (ICG), when administered intravenously the day prior to cranial surgery, is a re-purposed fluorophore that may afford safe, immediate visual confirmation of on-target tissue resection, thereby providing a valuable adjunct to intraoperative navigation and decreasing reliance on frozen pathology analysis. These first reported cases of SWIG for lymphoma in the CNS indicate that further study of fluorophores to improve biopsy targeting and yield is warranted.


Assuntos
Neoplasias do Sistema Nervoso Central , Verde de Indocianina , Humanos , Salas Cirúrgicas , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/cirurgia , Corantes Fluorescentes , Procedimentos Neurocirúrgicos/métodos
16.
J Nucl Med ; 64(6): 852-858, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36549916

RESUMO

Accurate differentiation between tumor progression (TP) and pseudoprogression remains a critical unmet need in neurooncology. 18F-fluciclovine is a widely available synthetic amino acid PET radiotracer. In this study, we aimed to assess the value of 18F-fluciclovine PET for differentiating pseudoprogression from TP in a prospective cohort of patients with suspected radiographic recurrence of glioblastoma. Methods: We enrolled 30 glioblastoma patients with radiographic progression after first-line chemoradiotherapy for whom surgical resection was planned. The patients underwent preoperative 18F-fluciclovine PET and MRI. The relative percentages of viable tumor and therapy-related changes observed in histopathology were quantified and categorized as TP (≥50% viable tumor), mixed TP (<50% and >10% viable tumor), or pseudoprogression (≤10% viable tumor). Results: Eighteen patients had TP, 4 had mixed TP, and 8 had pseudoprogression. Patients with TP/mixed TP had a significantly higher 40- to 50-min SUVmax (6.64 + 1.88 vs. 4.11 ± 1.52, P = 0.009) than patients with pseudoprogression. A 40- to 50-min SUVmax cutoff of 4.66 provided 90% sensitivity and 83% specificity for differentiation of TP/mixed TP from pseudoprogression (area under the curve [AUC], 0.86). A maximum relative cerebral blood volume cutoff of 3.672 provided 90% sensitivity and 71% specificity for differentiation of TP/mixed TP from pseudoprogression (AUC, 0.779). Combining a 40- to 50-min SUVmax cutoff of 4.66 and a maximum relative cerebral blood volume of 3.67 on MRI provided 100% sensitivity and 80% specificity for differentiating TP/mixed TP from pseudoprogression (AUC, 0.95). Conclusion: 18F-fluciclovine PET uptake can accurately differentiate pseudoprogression from TP in glioblastoma, with even greater accuracy when combined with multiparametric MRI. Given the wide availability of 18F-fluciclovine, larger, multicenter studies are warranted to determine whether amino acid PET with 18F-fluciclovine should be used in the routine posttreatment assessment of glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética , Ácidos Carboxílicos , Tomografia por Emissão de Pósitrons , Aminoácidos
17.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394838

RESUMO

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Temozolomida/uso terapêutico , Estudos Prospectivos , Neoplasias Encefálicas/patologia , Recidiva , Células Dendríticas/patologia , Vacinação
18.
Front Neurosci ; 16: 837624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784832

RESUMO

Introduction: The lateral habenula (LHb) is an epithalamic nucleus associated with negative valence and affective disorders. It receives input via the stria medullaris (SM) and sends output via the fasciculus retroflexus (FR). Here, we use tractography to reconstruct and characterize this pathway. Methods: Multi-shell human diffusion magnetic resonance imaging (dMRI) data was obtained from the human connectome project (HCP) (n = 20, 10 males) and from healthy controls (n = 10, 6 males) scanned at our institution. We generated LHb afferents and efferents using probabilistic tractography by selecting the pallidum as the seed region and the ventral tegmental area as the output target. Results: We were able to reconstruct the intended streamlines in all individuals from the HCP dataset and our dataset. Our technique also aided in identification of the LHb. In right-handed individuals, the streamlines were significantly more numerous in the left hemisphere (mean ratio 1.59 ± 0.09, p = 0.04). In left-handed individuals, there was no hemispheric asymmetry on average (mean ratio 1.00 ± 0.09, p = 1.0). Additionally, these streamlines were significantly more numerous in females than in males (619.9 ± 159.7 vs. 225.9 ± 66.03, p = 0.04). Conclusion: We developed a method to reconstruct the SM and FR without manual identification of the LHb. This technique enables targeting of these fiber tracts as well as the LHb. Furthermore, we have demonstrated that there are sex and hemispheric differences in streamline number. These findings may have therapeutic implications and warrant further investigation.

19.
Sci Data ; 9(1): 453, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906241

RESUMO

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Prognóstico
20.
Sci Rep ; 12(1): 8784, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610333

RESUMO

Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA