Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 877360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711797

RESUMO

Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.

2.
Animals (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209794

RESUMO

One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a "one health" approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts' organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.

3.
Probiotics Antimicrob Proteins ; 13(4): 926-948, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33738706

RESUMO

Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Probióticos , Candida auris
4.
J Sci Food Agric ; 101(4): 1523-1529, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869301

RESUMO

BACKGROUND: Chicken manure waste has a wide range of organic substances and mineral elements. This enriched source has stimulated great scientific interest in finding cleaner and more environmentally benign nutrient recovery options. This study aimed to determine an effective and eco-friendly method (i.e. subcritical water extraction) for processing fresh poultry manure. RESULTS: The high content of total organic carbon, including humic acids carbon and fulvic acids carbon, in extract was found to release under subcritical conditions. The organic compounds obtained by extraction with subcritical water correspond to humic acid in composition because of the presence in the sample of all the functional groups: polymer bonded by molecular hydrogen bond (3400 cm-1 ), the presence of CH2 and CH3 groups (2870 cm-1 ), the presence of carboxyl groups (1720 cm-1 ) and quinones (1640-1680 cm-1 ). The solid phase left over was characterized by a high content of organic carbon, phosphorus, potassium, and microelements. The maximum extraction of humic acid and fulvic acid carbon was found between 210 and 250 °C at a pressure of 50-60 atm, and the content was a maximum of 3647.2 × 10-6 g kg-1 at an extraction temperature of 250 °C. CONCLUSION: Given the high content of humic acid found in the extracted medium, the proposed subcritical extraction opens up new opportunities for nutrients recovery in the poultry industry. © 2020 Society of Chemical Industry.


Assuntos
Esterco/análise , Compostos Orgânicos/isolamento & purificação , Água/química , Animais , Carbono/análise , Galinhas , Substâncias Húmicas/análise , Compostos Orgânicos/química , Temperatura
5.
Curr Microbiol ; 76(3): 312-319, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30603963

RESUMO

The ability of fermentates of two potential probiotic strains, Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933, to lower the SOS response in bacteria was evaluated using Escherichia coli-based Lux biosensors (pRecA-lux) and the tested bacilli fermentates obtained through solid-state fermentation. The SOS response was stimulated by the addition of ciprofloxacine. Preparations of both Bacillus fermentates demonstrated SOS-inhibitory activity (up to 54.21%). The strain КATMIRA1933 was characterized by higher SOS-inhibitory activity. The active components of the fermentates were stable against heating, proteinase, and RNase action.


Assuntos
Antimutagênicos/farmacologia , Bacillus amyloliquefaciens/metabolismo , Bacillus subtilis/metabolismo , Probióticos/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Antimutagênicos/metabolismo , Bacillus/metabolismo , Técnicas Biossensoriais , Ciprofloxacina/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fermentação , Probióticos/metabolismo , Inibidores da Topoisomerase II/toxicidade
6.
Probiotics Antimicrob Proteins ; 9(1): 81-90, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27914001

RESUMO

Subtilosin, the cyclic lantibiotic protein produced by Bacillus subtilis KATMIRA1933, targets the surface receptor and electrostatically binds to the bacterial cell membrane. In this study, subtilosin was purified using ammonium sulfate ((NH4)2SO4) precipitation and purified via column chromatography. Subtilosin's antibacterial minimum and sub-minimum inhibitory concentrations (MIC and sub-MIC) and anti-biofilm activity (biofilm prevention) were established. Subtilosin was evaluated as a quorum sensing (QS) inhibitor in Gram-positive bacteria using Fe(III) reduction assay. In Gram-negative bacteria, subtilosin was evaluated as a QS inhibitor utilizing Chromobacterium voilaceum as a microbial reporter. The results showed that Gardnerella vaginalis was more sensitive to subtilosin with MIC of 6.25 µg/mL when compared to Listeria monocytogenes (125 µg/mL). The lowest concentration of subtilosin, at which more than 90% of G. vaginalis biofilm was inhibited without effecting the growth of planktonic cells, was 0.78 µg/mL. About 80% of L. monocytogenes and more than 60% of Escherichia coli biofilm was inhibited when 15.1 µg/mL of subtilosin was applied. Subtilosin with 7.8-125 µg/mL showed a significant reduction in violacein production without any inhibitory effect on the growth of C. violaceum. Subtilosin at 3 and 4 µg/mL reduced the level of Autoinducer-2 (AI-2) production in G. vaginalis. However, subtilosin did not influence AI-2 production by L. monocytogenes at sub-MICs of 0.95-15.1 µg/mL. To our knowledge, this is the first report exploring the relationship between biofilm prevention and quorum sensing inhibition in G. vaginalis using subtilosin as a quorum sensing inhibitor.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Bacillus subtilis/química , Bacteriocinas/isolamento & purificação , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Peptídeos Cíclicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA