Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 249: 112390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801884

RESUMO

Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.


Assuntos
Hidrogênio , Porfirinas , Cobalto , Catálise , Peptídeos
2.
Proc Natl Acad Sci U S A ; 120(17): e2206975120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068259

RESUMO

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Shewanella , Pontos Quânticos/química , Compostos de Cádmio/química , Hidrogênio/metabolismo , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Shewanella/metabolismo
3.
FEBS Lett ; 597(1): 174-190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331366

RESUMO

Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.


Assuntos
Hidrogênio , Prótons , Hidrogênio/química , Dióxido de Carbono , Oxirredução , Catálise
4.
ACS Catal ; 12(23): 14689-14697, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504916

RESUMO

A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO2 to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H2. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pK a buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO2 reduction for a biocatalyst previously developed for H2 production.

5.
J Inorg Biochem ; 230: 111753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182844

RESUMO

A system for visible light-driven hydrogen production from water is reported. This system makes use of a synthetic mini-enzyme known as a mimochrome (CoMC6*a) consisting of a cobalt deuteroporphyrin and two attached peptides as a catalyst, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a photosensitizer, and ascorbic acid as a sacrificial electron donor. The system achieves turnover numbers (TONs) up to 10,000 with respect to catalyst and optimal activity at pH 7. Comparison with related systems shows that CoMC6*a maintains the advantages of biomolecular catalysts, while exceeding other cobalt porphyrins in terms of total TON and longevity of catalysis. Herein, we lay groundwork for future study, where the synthetic nature of CoMC6*a will provide a unique opportunity to tailor proton reduction chemistry and expand to new reactivity.


Assuntos
Cobalto , Hidrogênio , Catálise , Cobalto/química , Hidrogênio/química , Oxirredução , Água/química
6.
Chem Sci ; 12(35): 11894-11913, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659730

RESUMO

Cytochromes c are small water-soluble proteins that catalyze electron transfer in metabolism and energy conversion processes. Hydrogenobacter thermophilus cytochrome c 552 presents a curious case in displaying fluxionality of its heme axial methionine ligand; this behavior is altered by single point mutation of the Q64 residue to N64 or V64, which fixes the ligand in a single configuration. The reorganization energy (λ) of these cytochrome c 552 variants is experimentally determined using a combination of rotating disc electrochemistry, chronoamperometry and cyclic voltammetry. The differences between the λ determined from these complementary techniques helps to deconvolute the contribution of the active site and its immediate environment to the overall λ (λ Total). The experimentally determined λ values in conjunction with DFT calculations indicate that the differences in λ among the protein variants are mainly due to the differences in contributions from the protein environment and not just inner-sphere λ. DFT calculations indicate that the position of residue 64, responsible for the orientation of the axial methionine, determines the geometric relaxation of the redox active molecular orbital (RAMO). The orientation of the RAMO with respect to the heme is key to determining electron transfer coupling (H AB) which results in higher ET rates in the wild-type protein relative to the Q64V mutant despite a 150 mV higher λ Total in the former.

7.
J Biol Inorg Chem ; 26(7): 763-774, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453614

RESUMO

The NEET proteins constitute a unique class of [2Fe-2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins' clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe-NHis and Fe-SCys bonds, similar to what is seen in other Fe-S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe-2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe-2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe-2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe-2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.


Assuntos
Compostos Férricos , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredução
8.
J Inorg Biochem ; 217: 111384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588276

RESUMO

A photochemical system utilizing the semisynthetic biomolecular catalyst acetylated cobalt microperoxidase-11 (CoMP11-Ac) along with [Ru(bpy)3]2+ as a photosensitizer and ascorbic acid as an electron donor is shown to generate hydrogen from water in a visible light-driven reaction. The reductive quenching pathway facilitated by photoexcited [Ru(bpy)3]2+ overcomes the high overpotential observed for CoMP11-Ac in electrocatalysis, yielding turnover numbers ranging from 606 to 2390 (2 µM - 0.1 µM CoMP11-Ac). The longevity of CoMP11-Ac in the photochemical system, sustaining catalysis for over 20 h, is in contrast to its previously reported behavior in an electrochemical system where catalysis slows after 15 min. Proton reduction turnover number and rate are highest at a neutral pH, a rare feature among cobalt catalysts in similar photochemical systems, which typically function best under acidic conditions. Incorporating biomolecular components into the design of catalysts for photochemical systems may address the need for hydrogen generation from neutral-pH water sources.


Assuntos
Complexos de Coordenação/química , Hidrogênio/química , Catálise , Cobalto/química , Luz , Compostos Organometálicos/química , Compostos Organometálicos/efeitos da radiação , Oxirredução , Porfirinas/química
9.
Chem Commun (Camb) ; 57(16): 2053-2056, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33507176

RESUMO

A photocatalytic hydrogen (H2) production system is reported using glutathione (GSH)-capped CdSe QDs with a cobalt precatalyst, yielding 130 000 mol H2 per mol cobalt over 48 hours. Analysis of the reaction mixtures after catalysis indicates that the active catalyst is a labile complex of cobalt and GSH formed in situ.

10.
J Chem Phys ; 154(3): 030901, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499632

RESUMO

Colloidal semiconducting nanocrystals (NCs) are powerful elements of a photocatalytic system useful for enabling a variety of chemical transformations owing to their strong light-absorbing properties and high degree of size-, shape-, and composition-tunability. Key to their utility is our understanding of the photoinduced charge transfer processes required for these photochemical transformations. This Perspective will focus on the implementation of semiconductor NCs for photochemical fuel formation. Three general system designs for photocatalytic proton reduction using semiconductor NCs will be reviewed: metal-semiconductor heterostructures, NC photosensitizers with molecular catalysts, and hydrogenase-based systems. Other relevant reactions toward solar fuel targets, such as CO2 and N2 reductions with NCs, will also be highlighted. Illustrating the versatile roles that NCs can play in light-driven chemical reactions, advances made toward NC-catalyzed organic transformations will be discussed. Finally, we will share a few concluding thoughts and perspectives on the future of the field, with a focus on goals toward improving and implementing NC-based technologies for solar fuel development.

11.
Chem Commun (Camb) ; 56(62): 8762-8765, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32628236

RESUMO

We report the improvement of photocatalytic proton reduction using molecular polyoxovanadate-alkoxide clusters as hole scavengers for CdSe quantum dots. The increased hydrogen production is explained by favorable charge interactions between reduced forms of the cluster and the charge on the quantum dots arising from the capping ligands.

12.
Biotechnol Appl Biochem ; 67(4): 463-483, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32588914

RESUMO

Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.


Assuntos
Biocatálise , Materiais Biomiméticos , Fotossíntese , Engenharia de Proteínas , Energia Solar , Catálise
13.
Inorg Chem ; 59(12): 8061-8069, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32436698

RESUMO

The effect of buffer pKa on the mechanism of electrochemical hydrogen evolution catalyzed by a cobalt porphyrin peptide (CoMP11-Ac) at constant pH is presented. The addition of buffer to CoMP11-Ac in water and KCl leads to an enhancement of the catalytic current of up to 200-fold relative to its value in the absence of a buffer. Two distinct catalytic regimes are identified as a function of the buffer pKa. In the presence of buffers with pKa ≤ 7.4, a fast catalysis regime limited by diffusion of buffer is reached. The catalytic half-wave potential (Eh) shifts anodically (from -1.42 to -1.26 V vs Ag/AgCl/KCl(1M)) as the buffer pKa decreases from 7.4 to 5.6, proposed to result from fast Co(III)-H formation following the catalysis-initiating Co(II/I) reduction. With higher-pKa buffers (pKa > 7.7), an Eh = -1.42 V, proposed to reflect the Co(II/I) couple, is maintained independent of the buffer pKa, consistent with rate-limiting Co(III)-H formation under these conditions. We conclude that the buffer species pKa impacts catalytic current and potential and the rate-determining step of the reaction.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Hidrogênio/química , Peptídeos/química , Porfirinas/química , Catálise , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Estrutura Molecular
14.
Biochemistry ; 59(12): 1289-1297, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32167292

RESUMO

Cobalt-mimochrome VI*a (CoMC6*a) is a synthetic mini-protein that catalyzes aqueous proton reduction to hydrogen (H2). In buffered water, there are multiple possible proton donors, complicating the elucidation of the mechanism. We have found that the buffer pKa and sterics have significant effects on activity, evaluated via cyclic voltammetry (CV). Protonated buffer is proposed to act as the primary proton donor to the catalyst, specifically through the protonated amine of the buffers that were tested. At a constant pH of 6.5, catalytic H2 evolution in the presence of buffer acids with pKa values ranging from 5.8 to 11.6 was investigated, giving rise to a potential-pKa relationship that can be divided into two regions. For acids with pKa values of ≤8.7, the half-wave catalytic potential (Eh) changes as a function of pKa with a slope of -128 mV/pKa unit, and for acids with pKa of ≥8.7, Eh changes as a function of pKa with a slope of -39 mV/pKa unit. In addition, a series of buffer acids were synthesized to explore the influence of steric bulk around the acidic proton on catalysis. The catalytic current in CV shows a significant decrease in the presence of the sterically hindered buffer acids compared to those of their parent compounds, also consistent with the added buffer acid acting as the primary proton donor to the catalyst and showing that acid structure in addition to pKa impacts activity. These results demonstrate that buffer acidity and structure are important considerations when optimizing and evaluating systems for proton-dependent catalysis in water.


Assuntos
Cobalto/química , Deuteroporfirinas/química , Hidrogênio/química , Metaloproteínas/química , Prótons , Soluções Tampão , Catálise , Concentração de Íons de Hidrogênio , Água/química
15.
Inorg Chem ; 58(24): 16402-16410, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31773947

RESUMO

CoGGH, a Gly-Gly-His tripeptide coordinated to a cobalt ion, is shown to catalyze the reduction of aqueous protons to hydrogen (H2) in a light-driven reaction in water near neutral pH. Using [Ru(bpy)3]2+ as a photosensitizer and ascorbate as an electron donor, a turnover number up to 2200 with respect to CoGGH has been observed with the system remaining active for more than 48 h. The reaction conditions that favor H2 production are consistent with a reductive quenching mechanism. Results also suggest that CoGGH is robust under these reaction conditions and loss of activity over time results from [Ru(bpy)3]2+ degradation.

16.
Chem Sci ; 9(45): 8582-8589, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568783

RESUMO

A synthetic enzyme is reported that electrocatalytically reduces protons to hydrogen (H2) in water near neutral pH under aerobic conditions. Cobalt mimochrome VI*a (CoMC6*a) is a mini-protein with a cobalt deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Comparison of the activity of CoMC6*a to that of cobalt microperoxidase-11 (CoMP11-Ac), a cobalt porphyrin catalyst with a single "proximal" peptide and no organized secondary structure, reveals that CoMC6*a has significantly enhanced longevity, yielding a turnover number exceeding 230 000, in comparison to 25 000 for CoMP11-Ac. Furthermore, comparison of cyclic voltammograms of CoMC6*a and CoMP11-Ac indicates that the trifluoroethanol-induced folding of CoMC6*a lowers the overpotential for catalytic H2 evolution by up to 100 mV. These results demonstrate that even a minimal polypeptide matrix can enhance longevity and efficiency of a H2-evolution catalyst.

17.
J Am Chem Soc ; 140(49): 16888-16892, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457856

RESUMO

A cobalt-tripeptide complex (CoGGH) is developed as an electrocatalyst for the selective six-electron, eight-proton reduction of nitrite to ammonium in aqueous buffer near neutral pH. The onset potential for nitrite reduction occurs at -0.65 V vs Ag/AgCl (1 M KCl). Controlled potential electrolysis at -0.90 V generates ammonium with a faradaic efficiency of 90 ± 3% and a turnover number of 3550 ± 420 over 5.5 h. CoGGH also catalyzes the reduction of the proposed intermediates nitric oxide and hydroxylamine to ammonium. These results reveal that a simple metallopeptide is an active functional mimic of the complex enzymes cytochrome c nitrite reductase and siroheme-containing nitrite reductase.


Assuntos
Compostos de Amônio/síntese química , Cobalto/química , Nitritos/química , Oligopeptídeos/química , Catálise , Complexos de Coordenação/química , Eletrólise/métodos , Hidroxilamina/química , Modelos Químicos , Óxido Nítrico/química , Oxirredução
18.
J Biol Inorg Chem ; 23(7): 1073-1083, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143872

RESUMO

Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.


Assuntos
Grupo dos Citocromos c/química , Heme/química , Bactérias/enzimologia , Grupo dos Citocromos c/metabolismo , Heme/análogos & derivados , Heme/genética , Mutação , Conformação Proteica
19.
Science ; 360(6391)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798857

RESUMO

Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. A key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

20.
FEBS Open Bio ; 7(11): 1778-1783, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29123985

RESUMO

Nontypeable Haemophilus influenzae (NTHi) are Gram-negative pathogens that contribute to a variety of diseases, including acute otitis media and chronic obstructive pulmonary disease. As NTHi have an absolute requirement for heme during aerobic growth, these bacteria have to scavenge heme from their human hosts. These heme sources can range from free heme to heme bound to proteins, such as hemoglobin. To test the impact of heme structural factors on heme acquisition by NTHi, we prepared a series of heme sources that systematically vary in heme exposure and covalent binding of heme to peptide/protein and tested the ability of NTHi to use these sources to support growth. Results from this study suggest that NTHi can utilize protein-associated heme only if it is noncovalently attached to the protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA