Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2031): 20241142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288798

RESUMO

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.


Assuntos
Alelos , Anopheles , Regulação da Expressão Gênica , Resistência a Inseticidas , Anopheles/genética , Anopheles/metabolismo , Animais , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Inseticidas/farmacologia
2.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38045426

RESUMO

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA