Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Open Forum Infect Dis ; 11(5): ofae183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680611

RESUMO

Blockade of the co-inhibitory receptor PD-1 enhances antitumor responses by boosting the function of antigen-specific T cells. Although rare, PD-1 blockade in patients with cancer can lead to exacerbation of infection-associated pathology. Here, we detail the case of a 38-year-old man who was enrolled in a clinical trial for assessment of the safety and activity of anti-PD-1 therapy for Kaposi sarcoma in people with HIV well-controlled on antiretroviral therapy. Less than a week after receiving the first dose of anti-PD-1 antibody (pembrolizumab), he presented with severe abdominal pain associated with sudden exacerbations of preexisting cytomegalovirus (CMV) enteritis and nontuberculous mycobacterial mesenteric lymphadenitis. Plasma biomarkers of gastrointestinal tract damage were highly elevated compared with healthy controls, consistent with HIV-associated loss of gut epithelial barrier integrity. Moreover, CMV-specific CD8 T cells expressed high levels of PD-1, and 7 days following PD-1 blockade, there was an increase in the frequency of activated CD38+ Ki67+ CMV-specific CD8 T cells. This case highlights the potential for PD-1 blockade to drive rapid exacerbations of inflammatory symptoms when administered to individuals harboring multiple unresolved infections.

2.
Blood Adv ; 8(3): 523-537, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048388

RESUMO

ABSTRACT: Macrophages orchestrate tissue immunity from the initiation and resolution of antimicrobial immune responses to the repair of damaged tissue. Murine studies demonstrate that tissue-resident macrophages are a heterogenous mixture of yolk sac-derived cells that populate the tissue before birth, and bone marrow-derived replacements recruited in adult tissues at steady-state and in increased numbers in response to tissue damage or infection. How this translates to species that are constantly under immunologic challenge, such as humans, is unknown. To understand the ontogeny and longevity of tissue-resident macrophages in nonhuman primates (NHPs), we use a model of autologous hematopoietic stem progenitor cell (HSPC) transplantation with HSPCs genetically modified to be marked with clonal barcodes, allowing for subsequent analysis of clonal ontogeny. We study the contribution of HSPCs to tissue macrophages, their clonotypic profiles relative to leukocyte subsets in the peripheral blood, and their transcriptomic and epigenetic landscapes. We find that HSPCs contribute to tissue-resident macrophage populations in all anatomic sites studied. Macrophage clonotypic profiles are dynamic and overlap significantly with the clonal hierarchy of contemporaneous peripheral blood monocytes. Epigenetic and transcriptomic landscapes of HSPC-derived macrophages are similar to tissue macrophages isolated from NHPs that did not undergo transplantation. We also use in vivo bromodeoxyuridine infusions to monitor tissue macrophage turnover in NHPs that did not undergo transplantation and find evidence for macrophage turnover at steady state. These data demonstrate that the life span of most tissue-resident macrophages is limited and can be replenished continuously from HSPCs.


Assuntos
Células-Tronco Hematopoéticas , Macaca , Humanos , Animais , Camundongos , Macrófagos , Monócitos , Medula Óssea
3.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37425787

RESUMO

Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.

4.
J Virol ; 97(7): e0060023, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338342

RESUMO

Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-ß-cyclodextrin [HPßCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPßCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1ß (IL-1ß) production-with stimulation varying significantly by HPßCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPßCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPßCD has historically been considered inert, recent findings suggest that HPßCD may contribute to inflammation. Herein, we investigate the contribution of HPßCD to healthy macaque inflammation in vitro and in vivo. We observe that HPßCD causes an induction of sCD14 and IL-1ß from myeloid cells in vitro and demonstrate that HPßCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPßCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Progressão da Doença , Inflamação , Leucócitos Mononucleares , Receptores de Lipopolissacarídeos , Macaca mulatta , Carga Viral
7.
J Allergy Clin Immunol Pract ; 11(7): 2080-2086.e5, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997122

RESUMO

BACKGROUND: Intestinal epithelial integrity compromise has been identified in gastrointestinal (GI), atopic, and autoimmune diseases. OBJECTIVE: Episodes of idiopathic anaphylaxis (IA) are often accompanied by GI manifestations. We, therefore, sought to determine whether surrogate markers of GI permeability were aberrant in this patient population. METHODS: Serum concentrations of zonulin, intestinal fatty acid binding protein (I-FABP), and soluble CD14 (sCD14) measured in 54 patients with IA were compared with concentrations in healthy controls (HCs); and correlated with clinical and laboratory parameters. RESULTS: The I-FABP was elevated in sera of patients with IA compared with HCs (median 1,378.0 pg/mL vs 479.0 pg/mL, respectively; P < .001). The sCD14 was also elevated compared with HCs (median 2,017.0 ng/mL and 1,189.0 ng/mL, respectively; P < .001), whereas zonulin was comparable between patients with IA and HCs (median 49.6 ng/mL vs 52.4 ng/mL, respectively; P = .40). The I-FABP was elevated in patients with IA who experienced vomiting and/or diarrhea compared with patients with IA who did not (P = .0091). CONCLUSIONS: The I-FABP and sCD14 are elevated in the serum of patients with IA. Elevations in these biomarkers of IA provides evidence that increased GI permeability, as is observed in other allergic conditions such as food allergy, is a common finding in those with IA and offers possible insight into the pathogenesis of this disease.


Assuntos
Anafilaxia , Receptores de Lipopolissacarídeos , Humanos , Anafilaxia/etiologia , Proteínas de Ligação a Ácido Graxo , Biomarcadores , Diarreia
8.
Cell Rep ; 42(1): 112020, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36848230

RESUMO

Variations in the composition of the intestinal bacterial microbiome correlate with acquisition of some sexually transmitted pathogens. To experimentally assess the contribution of intestinal dysbiosis to rectal lentiviral acquisition, we induce dysbiosis in rhesus macaques (RMs) with the antibiotic vancomycin prior to repeated low-dose intrarectal challenge with simian immunodeficiency virus (SIV) SIVmac239X. Vancomycin administration reduces T helper 17 (TH17) and TH22 frequencies, increases expression of host bacterial sensors and antibacterial peptides, and increases numbers of transmitted-founder (T/F) variants detected upon SIV acquisition. We observe that SIV acquisition does not correlate with measures of dysbiosis but rather associates with perturbations in the host antimicrobial program. These findings establish a functional association between the intestinal microbiome and susceptibility to lentiviral acquisition across the rectal epithelial barrier.


Assuntos
Disbiose , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Vancomicina , Antibacterianos
9.
Nat Commun ; 14(1): 979, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813761

RESUMO

CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Chlorocebus aethiops , Progressão da Doença , Linfócitos T CD4-Positivos
10.
Microbiol Spectr ; 11(1): e0213922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475838

RESUMO

The bacterial component of the gastrointestinal tract microbiome is comprised of hundreds of species, the majority of which live in symbiosis with the host. The bacterial microbiome is influenced by host diet and disease history, and host genetics may additionally play a role. To understand the degree to which host genetics shapes the gastrointestinal tract microbiome, we studied fecal microbiomes in 4 species of nonhuman primates (NHPs) held in separate facilities but fed the same base diet. These animals include Chlorocebus pygerythrus, Chlorocebus sabaeus, Macaca mulatta, and Macaca nemestrina. We also followed gastrointestinal tract microbiome composition in 20 Macaca mulatta (rhesus macaques [RMs]) as they transitioned from an outdoor to indoor environment and compared 6 Chlorocebus pygerythrus monkeys that made the outdoor to indoor transition to their 9 captive-born offspring. We found that genetics can influence microbiome composition, with animals of different genera (Chlorocebus versus Macaca) having significantly different gastrointestinal (GI) microbiomes despite controlled diets. Animals within the same genera have more similar microbiomes, although still significantly different, and animals within the same species have even more similar compositions that are not significantly different. Significant differences were also not observed between wild-born and captive-born Chlorocebus pygerythrus, while there were significant changes in RMs as they transitioned into captivity. Together, these results suggest that the effects of captivity have a larger impact on the microbiome than other factors we examined within a single NHP species, although host genetics does significantly influence microbiome composition between NHP genera and species. IMPORTANCE Our data point to the degree to which host genetics can influence GI microbiome composition and suggest, within primate species, that individual host genetics is unlikely to significantly alter the microbiome. These data are important for the development of therapeutics aimed at altering the microbiome within populations of genetically disparate members of primate species.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Chlorocebus aethiops , Microbioma Gastrointestinal/genética , Macaca mulatta , Filogenia , Microbiota/genética , Dieta , RNA Ribossômico 16S/genética
11.
bioRxiv ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36172119

RESUMO

The pro- and anti-inflammatory pathways that determine the balance of inflammation and viral control during SARS-CoV-2 infection are not well understood. Here we examine the roles of IFNγ and IL-10 in regulating inflammation, immune cell responses and viral replication during SARS-CoV-2 infection of rhesus macaques. IFNγ blockade tended to decrease lung inflammation based on 18 FDG-PET/CT imaging but had no major impact on innate lymphocytes, neutralizing antibodies, or antigen-specific T cells. In contrast, IL-10 blockade transiently increased lung inflammation and enhanced accumulation of virus-specific T cells in the lower airways. However, IL-10 blockade also inhibited the differentiation of virus-specific T cells into airway CD69 + CD103 + T RM cells. While virus-specific T cells were undetectable in the nasal mucosa of all groups, IL-10 blockade similarly reduced the frequency of total T RM cells in the nasal mucosa. Neither cytokine blockade substantially affected viral load and infection ultimately resolved. Thus, in the macaque model of mild COVID-19, the pro- and anti-inflammatory effects of IFNγ and IL-10 have no major role in control of viral replication. However, IL-10 has a key role in suppressing the accumulation of SARS-CoV-2-specific T cells in the lower airways, while also promoting T RM at respiratory mucosal surfaces.

12.
Commun Biol ; 5(1): 878, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028574

RESUMO

Translocated lipopolysaccharide (LPS) activates monocytes via TLR4 and is hypothesized to increase cardiovascular disease risk in persons living with HIV. We tested whether mTOR activity supports LPS-stimulated monocyte production of pro-inflammatory cytokines and tissue factor (TF), as it propels the inflammatory response in several immune cell types besides monocytes. However, multi-omics analyses here demonstrate that mTOR activates a metabolic pathway that limits abundance of these gene products in monocytes. Treatment of primary human monocytes with catalytic mTOR inhibitors (mTORi) increased LPS-induced polyfunctional responses, including production of IL-1ß, IL-6, and the pro-coagulant, TF. NF-κB-driven transcriptional activity is enhanced with LPS stimulation after mTORi treatment to increase expression of F3 (TF). Moreover, intracellular NAD+ availability is restricted due to decreased salvage pathway synthesis. These results document mTOR-mediated restraint of the LPS-induced transcriptional response in monocytes and a metabolic mechanism informing strategies to reverse enhanced risk of coagulopathy in pro-inflammatory states.


Assuntos
Lipopolissacarídeos , Monócitos , Serina-Treonina Quinases TOR , Citocinas , Humanos , Serina-Treonina Quinases TOR/metabolismo , Tromboplastina
13.
Sci Transl Med ; 14(658): eabl3927, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976997

RESUMO

Unique gut microbiota compositions have been associated with inflammatory diseases, but identifying gut bacterial functions linked to immune activation in humans remains challenging. Translocation of pathogens from mucosal surfaces into peripheral tissues can elicit immune activation, although whether and which gut commensal bacteria translocate in inflammatory diseases is difficult to assess. We report that a subset of commensal gut microbiota constituents that translocate across the gut barrier in mice and humans are associated with heightened systemic immunoglobulin G (IgG) responses. We present a modified high-throughput, culture-independent approach to quantify systemic IgG against gut commensal bacteria in human serum samples without the need for paired stool samples. Using this approach, we highlight several commensal bacterial species that elicit elevated IgG responses in patients with inflammatory bowel disease (IBD) including taxa within the clades Collinsella, Bifidobacterium, Lachnospiraceae, and Ruminococcaceae. These and other taxa identified as translocating bacteria or targets of systemic immunity in IBD concomitantly exhibited heightened transcriptional activity and growth rates in IBD patient gut microbiomes. Our approach represents a complementary tool to illuminate interactions between the host and its gut microbiota and may provide an additional method to identify microbes linked to inflammatory disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Animais , Bactérias , Microbioma Gastrointestinal/fisiologia , Humanos , Imunoglobulina G , Doenças Inflamatórias Intestinais/microbiologia , Camundongos
14.
Front Immunol ; 13: 899559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032119

RESUMO

The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.


Assuntos
COVID-19 , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Trato Gastrointestinal , Humanos , Inflamação , SARS-CoV-2
15.
PLoS Pathog ; 18(7): e1010611, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797339

RESUMO

Antigen-specific CD8+ T cells play a key role in the host's antiviral response. T cells recognize viral epitopes via the T cell receptor (TCR), which contains the complementarity-determining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRß gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque nonhuman primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T cells. Here, we sought to determine level of antigen exposure responsible for the tissue-specific clonotypic structure. We examined whether the priming event and/or chronic antigen exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after administration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus (CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses that chronically replicate. TCR sequences unique to anatomical sites were identified after acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones also persisted into chronic infection and the clonotypic structure continued to evolve after ARV administration. Finally, tissue-specific clones were also observed in CMV-specific CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce tissue-specific clones and that this clonal hierarchy can persist when antigen loads are naturally or therapeutically reduced, providing mechanistic insight into tissue-residency.


Assuntos
Infecções por Citomegalovirus , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Epitopos , Primatas , Receptores de Antígenos de Linfócitos T
16.
PLoS Pathog ; 18(7): e1010723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867722

RESUMO

Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4ß7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Humanos , Macaca mulatta
17.
J Immunol ; 209(2): 337-345, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750337

RESUMO

African green monkeys (AGMs), Chlorocebus pygerythrus, are a natural host for a lentivirus related to HIV, SIV. SIV-infected AGMs rarely progress to AIDS despite robust viral replication. Though multiple mechanisms are involved, a primary component is the animals' ability to downregulate CD4 expression on mature CD4+ Th cells, rendering these cells resistant to infection by SIV. These CD8αα+ T cells retain functional characteristics of CD4+ Th cells while simultaneously acquiring abilities of cytotoxic CD8αß+ T cells. To determine mechanisms underlying functional differences between T cell subsets in AGMs, chromatin accessibility in purified populations was determined by assay for transposase-accessible chromatin sequencing. Differences in chromatin accessibility alone were sufficient to cluster cells by subtype, and accessibility at the CD4 locus reflected changes in CD4 expression. DNA methylation at the CD4 locus also correlated with inaccessible chromatin. By associating accessible regions with nearby genes, gene expression was found to correlate with accessibility changes. T cell and immune system activation pathways were identified when comparing regions that changed accessibility from CD4+ T cells to CD8αα+ T cells. Different transcription factor binding sites are revealed as chromatin accessibility changes, and these differences may elicit downstream changes in differentiation. This comprehensive description of the epigenetic landscape of AGM T cells identified genes and pathways that could have translational value in therapeutic approaches recapitulating the protective effects CD4 downregulation.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Chlorocebus aethiops , Cromatina/metabolismo , Regulação para Baixo , Epigênese Genética , Subpopulações de Linfócitos T , Linfócitos T Auxiliares-Indutores
18.
Cell Rep ; 39(9): 110896, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649361

RESUMO

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.


Assuntos
Coinfecção , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/patologia , Granuloma/patologia , Infecções por HIV/complicações , Infecções por HIV/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose/patologia
19.
Sci Rep ; 12(1): 7491, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523797

RESUMO

Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.


Assuntos
Infecções por HIV , Reconstituição Imune , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Macaca mulatta
20.
Sci Immunol ; : eabo0535, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35271298

RESUMO

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA