Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Photochem Photobiol ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431526

RESUMO

Guidance on maximal limits for ultraviolet (UV) exposure has been developed by national and international organizations to protect against adverse effects on human skin and eyes. These guidelines consider the risk of both acute effects (i.e., erythema and photokeratitis) and delayed effects (e.g., skin and ocular cancers) when determining exposure limits, and specify the dose a person can safely receive during an 8-h period without harmful effects. The determination of these exposure limits relies on the action spectra of photobiological responses triggered by UV radiation that quantify the effectiveness of each wavelength at eliciting each of these effects. With growing interest in using far-UVC (200-235 nm) radiation to control the spread of airborne pathogens, recent arguments have emerged about revisiting exposure limits for UV wavelengths. However, the standard erythema action spectrum, which provides some of the quantitative basis for these limits, has not been extended below 240 nm. This study assists to expand the erythema action spectrum to far-UVC wavelengths using a hairless albino mice model. We estimate that inducing acute effects on mouse skin with 222 nm radiation requires a dose of 1162 mJ/cm2, well above the current ACGIH skin exposure limit of 480 mJ/cm2.

2.
Liver Int ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263815

RESUMO

BACKGROUND AND AIMS: The course of adults with ZZ alpha-1-antitrypsin deficiency (AATD) liver disease is unpredictable. The utility of markers, including liver biopsy, is undefined. METHODS: A prospective cohort, including protocol liver biopsies, was enrolled to address these questions. RESULTS: We enrolled 96 homozygous ZZ AATD adults prospectively at three US sites with standardized clinical evaluations, and protocol liver biopsies. Fibrosis was scored using Ishak (stages 0-6). Also, 51% of the 96 subjects had Ishak score >1 fibrosis (49% Ishak 0-1, 36% Ishak 2-3 and 15% ≥4). Elevated aspartate aminotransferase (AST) more than alanine aminotransferase (ALT), high body mass index (BMI), obesity, AST platelet ratio index and elevated serum Z alpha 1 antitrypsin (AAT) polymer levels were associated with increased fibrosis. Steatosis did not correlate to fibrosis. Increased fibrosis was associated with increased mutant Z polymer globular inclusions (p = .002) and increased diffuse cytoplasmic Z polymer on biopsy (p = .0029) in a direct relationship. Increased globule Z polymer was associated with increased serum AST (p = .007) and increased periportal inflammation on histopathology (p = .004), but there was no relationship of Z polymer hepatocellular accumulation with ALT, gamma glutamine transferase, inflammation in other parts of the lobule, necrosis or steatosis. Serum Z polymer levels were directly correlated to hepatic Z protein polymer content. Lung function, smoking and alcohol consumption patterns were not associated with fibrosis. CONCLUSION: In AATD high BMI, obesity and elevated AST are associated with increased fibrosis. Liver biopsy features are correlated to some serum tests. Serum Z AAT polymer levels could be a future biomarker to detect fibrosis early and is directly correlated to liver Z content.

3.
Sci Transl Med ; 16(764): eadi0284, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259813

RESUMO

Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células de Kupffer , Fígado , Ativação de Macrófagos , Hepatopatia Gordurosa não Alcoólica , Células de Kupffer/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Morte Celular , Lisossomos/metabolismo , Fagocitose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo
4.
J Neurol ; 271(10): 6667-6679, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39141064

RESUMO

Pathogenic variants in the Cu/Zn superoxide dismutase (SOD1) gene can be detected in approximately 2% of sporadic and 11% of familial amyotrophic lateral sclerosis (ALS) patients in Europe. We analyzed the clinical phenotypes of 83 SOD1-ALS patients focusing on patients carrying the most frequent (likely) pathogenic variants (R116G, D91A, L145F) in Germany. Moreover, we describe the effect of tofersen treatment on ten patients carrying these variants. R116G patients showed the most aggressive course of disease with a median survival of 22.0 months compared to 198.0 months in D91A and 87.0 months in L145F patients (HR 7.71, 95% CI 2.89-20.58 vs. D91A; p < 0.001 and HR 4.25, 95% CI 1.55-11.67 vs. L145F; p = 0.02). Moreover, R116G patients had the fastest median ALSFRS-R progression rate with 0.12 (IQR 0.07-0.20) points lost per month. Median diagnostic delay was 10.0 months (IQR 5.5-11.5) and therefore shorter compared to 57.5 months (IQR 14.0-83.0) in D91A (p < 0.001) and 21.5 months (IQR 5.8-38.8) in L145F (p = 0.21) carriers. As opposed to D91A carriers (50.0%), 96.2% of R116G (p < 0.001) and 100.0% of L145F (p = 0.04) patients reported a positive family history. During tofersen treatment, all patients showed a reduction of neurofilament light chain (NfL) serum levels, independent of the SOD1 variant. Patients with SOD1-ALS carrying R116G, D91A, or L145F variants show commonalities, but also differences in their clinical phenotype, including a faster progression rate with shorter survival in R116G, and a comparatively benign disease course in D91A carriers.


Assuntos
Esclerose Lateral Amiotrófica , Progressão da Doença , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/diagnóstico , Superóxido Dismutase-1/genética , Masculino , Feminino , Alemanha , Pessoa de Meia-Idade , Idoso , Mutação , Adulto , Fenótipo
5.
Sens Diagn ; 3(8): 1344-1352, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39129862

RESUMO

In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.

6.
ACS Omega ; 9(32): 35182-35196, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157112

RESUMO

A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.

7.
Ann Neurol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177232

RESUMO

OBJECTIVE: Neurofilament light chains (NfL) and phosphorylated neurofilament heavy chains (pNfH), established as diagnostic and prognostic biomarkers in hospital-based amyotrophic lateral sclerosis (ALS) cohorts, are now surrogate markers in clinical trials. This study extends their evaluation to a population level, with the aim of advancing their full establishment and assessing the transferability of biomarker findings from controlled cohorts to real-world ALS populations. METHODS: We measured serum NfL and pNfH levels in all ALS patients (n = 790) and general population controls (n = 570) with available baseline samples participating in the epidemiological ALS Registry Swabia, providing platform-specific (ELLA™) reference data and Z-scores for controls, as well as reference data, disease-specific Z-scores and longitudinal data in ALS. We evaluated the diagnostic and prognostic utility of neurofilaments and quantified the impact of ALS-related factors and non-ALS confounders. RESULTS: Neurofilaments showed high diagnostic and prognostic utility at the population level, with NfL superior to pNfH. The novel concept of a population-based ALS Z-score significantly improved the prognostic utility compared to absolute raw values. Both biomarkers increased more strongly with age in controls than in ALS, and age adjustment improved diagnostic accuracy. Our data show that disease progression rates, ALS phenotype, body mass index (BMI), and renal function need to be considered when interpreting neurofilament levels; longitudinal neurofilament levels were generally stable in individual patients, especially when adjusted for age and baseline levels. INTERPRETATION: Population-based assessment enhances the utility of particularly serum NfL as a diagnostic and prognostic biomarker in ALS and improves the translation of findings from controlled cohorts to real-world populations. ANN NEUROL 2024.

8.
Sci Rep ; 14(1): 19789, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187542

RESUMO

In major radiological events, rapid assays to detect ionizing radiation exposure are crucial for effective medical interventions. The purpose of these assays is twofold: to categorize affected individuals into groups for initial treatments, and to provide definitive dose estimates for continued care and epidemiology. However, existing high-throughput cytogenetic biodosimetry assays take about 3 days to yield results, which delays critical interventions. We have developed a multiwell-based variant of the chemical-induced G0-phase Premature Chromosome Condensation Assay that delivers same-day results. Our findings revealed that using a concentration of phosphatase inhibitor lower than recommended significantly increases the yield of cells with highly condensed chromosomes. These chromosomes exhibited increased fragmentation in a dose-dependent manner, enabling to quantify radiation damage using a custom Deep Learning algorithm. This algorithm demonstrated reasonable performance in categorizing doses into distinct treatment groups (84% and 80% accuracy for three and four iso-treatment dose bins, respectively) and showed reliability in determining the actual doses received (correlation coefficient of 0.879). This method is amendable to full automation and has the potential to address the need for same-day, high-throughput cytogenetic test for both dose categorization and dose reconstruction in large-scale radiation emergencies.


Assuntos
Radiometria , Humanos , Radiometria/métodos , Radiação Ionizante , Bioensaio/métodos , Relação Dose-Resposta à Radiação , Ensaios de Triagem em Larga Escala/métodos
9.
Front Oncol ; 14: 1422211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193391

RESUMO

Introduction: Treating head and neck squamous cell carcinomas (HNSCC), especially human papillomavirus negative (HPV-) and locally advanced cases, remains difficult. Our previous analyses of radiotherapy-only HNSCC clinical trials data using mechanistically-motivated models of tumor repopulation and killing by radiotherapy predicted that hyperfractionation with twice-daily fractions, or hypofractionation involving increased doses/fraction and reduced treatment durations, both improve tumor control and reduce late normal tissue toxicity, compared with standard protocols using 35×2 Gy. Here we further investigated the validity of these conclusions by analyzing a large modern dataset on 3,346 HNSCC radiotherapy patients from the University Health Network in Toronto, Canada, where 42.5% of patients were also treated with chemotherapy. Methods: We used a two-step approach that combines mechanistic modeling concepts with state-of-the-art machine learning, beginning with Random Survival Forests (RSF) for an exploratory analysis and followed by Causal Survival Forests (CSF) for a focused causal analysis. The mechanistic concept of biologically effective dose (BED) was implemented for the standard dose-independent (DI) tumor repopulation model, our alternative dose-dependent (DD) repopulation model, and a simple model with no repopulation (BEDsimp). These BED variants were included in the RSF model, along with age, stage, HPV status and other relevant variables, to predict patient overall survival (OS) and cause-specific mortality (deaths from the index cancer, other cancers or other causes). Results: Model interpretation using Shapley Additive Explanations (SHAP) values and correlation matrices showed that high values of BEDDD or BEDDI, but not BEDsimp, were associated with decreased patient mortality. Targeted causal inference analyses were then performed using CSF to estimate the causal effect of each BED variant on OS. They revealed that high BEDDD (>61.8 Gy) or BEDDI (>57.6 Gy), but not BEDsimp, increased patient restricted mean survival time (RMST) by 0.5-1.0 years and increased survival probability (SP) by 5-15% several years after treatment. In addition to population-level averages, CSF generated individual-level causal effect estimates for each patient, facilitating personalized medicine. Discussion: These findings are generally consistent with those of our previous mechanistic modeling, implying the potential benefits of altered radiotherapy fractionation schemes (e.g. 25×2.4 Gy, 20×2.75 Gy, 18×3.0 Gy) which increase BEDDD and BEDDI and counteract tumor repopulation more effectively than standard fractionation. Such regimens may represent potentially useful hypofractionated options for treating HNSCC.

10.
Cell Death Dis ; 15(8): 560, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097602

RESUMO

Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.


Assuntos
Esclerose Lateral Amiotrófica , Neurônios Motores , Sinaptotagminas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Heterozigoto , Fenótipo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/genética , Técnicas de Inativação de Genes
11.
Sci Rep ; 14(1): 17974, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095647

RESUMO

This study explores the impact of densely-ionizing radiation on non-cancer and cancer diseases, focusing on dose, fractionation, age, and sex effects. Using historical mortality data from approximately 21,000 mice exposed to fission neutrons, we employed random survival forest (RSF), a powerful machine learning algorithm accommodating nonlinear dependencies and interactions, treating cancer and non-cancer outcomes as competing risks. Unlike traditional parametric models, RSF avoids strict assumptions and captures complex data relationships through decision tree ensembles. SHAP (SHapley Additive exPlanations) values and variable importance scores were employed for interpretation. The findings revealed clear dose-response trends, with cancer being the predominant cause of mortality. SHAP value dose-response shapes differed, showing saturation for cancer hazard at high doses (> 2 Gy) and a more linear pattern at lower doses. Non-cancer responses remained more linear throughout the entire dose range. There was a potential inverse dose rate effect for cancer, while the evidence for non-cancer was less conclusive. Sex and age effects were less pronounced. This investigation, utilizing machine learning, enhances our understanding of the patterns of non-cancer and cancer mortality induced by densely-ionizing radiations, emphasizing the importance of such approaches in radiation research, including space travel and radioprotection.


Assuntos
Aprendizado de Máquina , Nêutrons , Animais , Camundongos , Feminino , Masculino , Relação Dose-Resposta à Radiação , Fatores Etários , Fatores Sexuais , Neoplasias Induzidas por Radiação/mortalidade , Fracionamento da Dose de Radiação
12.
Proc Natl Acad Sci U S A ; 121(35): e2405746121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172787

RESUMO

While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver-resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte-derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte-derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid-associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease-resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown-like structures. TREM2+ macrophages are functionally important not only for restricting MASH-fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.


Assuntos
Células de Kupffer , Cirrose Hepática , Macrófagos , Glicoproteínas de Membrana , Receptores Imunológicos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Animais , Camundongos , Macrófagos/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Células de Kupffer/metabolismo , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Masculino , Lipídeos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Camundongos Knockout
13.
Adv Sci (Weinh) ; : e2401415, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965824

RESUMO

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

14.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854157

RESUMO

In cytogenetic biodosimetry, assessing radiation exposure typically requires over 48 hours for cells to reach mitosis, significantly delaying the administration of crucial radiation countermeasures needed within the first 24 hours post-exposure. To improve medical response times, we incorporated the G0-Premature Chromosome Condensation (G0-PCC) technique with the Rapid Automated Biodosimetry Tool-II (RABiT-II), creating a faster alternative for large-scale radiation emergencies. Our findings revealed that using a lower concentration of Calyculin A (Cal A) than recommended effectively increased the yield of highly-condensed G0-PCC cells (hPCC). However, integrating recombinant CDK1/Cyclin B kinase, vital for chromosome condensation, proved challenging due to the properties of these proteins affecting interactions with cellular membranes. Interestingly, Cal A alone was capable of inducing chromosome compaction in some G0 cells even in the absence of mitotic kinases, although these chromosomes displayed atypical morphologies. This suggests that Cal A mechanism for compacting G0 chromatin may differ from condensation driven by mitotic kinases. Additionally, we observed a correlation between radiation dose and extent of hPCC chromosome fragmentation, which allowed us to automate radiation damage quantification using a Convolutional Neural Network (CNN). Our method can address the need for a same-day cytogenetic biodosimetry test in radiation emergency situations.

15.
Nat Aging ; 4(7): 969-983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834884

RESUMO

Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.


Assuntos
Miosite de Corpos de Inclusão , Humanos , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Masculino , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Células Dendríticas/patologia , Células Dendríticas/metabolismo , Proteínas GADD45
16.
STAR Protoc ; 5(2): 103111, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38833372

RESUMO

Currently, there is no effective treatment for obesity and alcohol-associated liver diseases, partially due to the lack of translational human models. Here, we present a protocol to generate 3D human liver spheroids that contain all the liver cell types and mimic "livers in a dish." We describe strategies to induce metabolic and alcohol-associated hepatic steatosis, inflammation, and fibrosis. We outline potential applications, including using human liver spheroids for experimental and translational research and drug screening to identify potential anti-fibrotic therapies.


Assuntos
Cirrose Hepática , Fígado , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fígado/patologia , Estresse Fisiológico/fisiologia , Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Hepatócitos/patologia
17.
Photochem Photobiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702942

RESUMO

Far-UVC radiation between 200 and 230 nm is a promising technology for reducing airborne disease transmission. Previous work with far-UVC lamps has demonstrated the efficacy of far-UVC radiation to inactivate bacteria and viruses while presenting minimal human health hazards. While far-UVC intentionally exposes the occupied space, effectively disinfecting air between occupants, installations must still ensure that occupant eye and skin exposure is within the recommended daily limits. This study examines far-UVC-sensitive films for measuring the dose received by occupants within two real-world far-UVC installations. The film is characterized for accuracy, angular response, wavelength response, and sources of uncertainty in film response, and used to obtain individual exposure doses that account for both the non-uniform irradiance and the unique motion of individuals within the space. Dosimetry results using the films, which account for the time-weighted average exposure of an occupant, ranged from 10% to 49% of the maximum calculated stationary dose based on peak irradiance measurements. Results from this study spotlight the need to incorporate time-weighted average considerations into the design and safety assessment of far-UVC installations to ultimately operate far-UVC technology with its full potential to prevent the spread of potentially fatal infectious diseases.

18.
Med Phys ; 51(6): 3850-3923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721942

RESUMO

Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.


Assuntos
Braquiterapia , Planejamento da Radioterapia Assistida por Computador , Braquiterapia/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Modelos Biológicos , Dosagem Radioterapêutica , Relatório de Pesquisa , Fenômenos Biofísicos , Biofísica
19.
Biomolecules ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672422

RESUMO

Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.


Assuntos
Progressão da Doença , Hepatopatias Alcoólicas , Humanos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Animais , Fígado/metabolismo , Fígado/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Epigênese Genética
20.
Radiat Res ; 201(4): 366-367, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588379
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA