Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39386676

RESUMO

The SARS-CoV-2 Nucleocapsid (N) is a 419 amino acids protein that drives the compaction and packaging of the viral genome. This compaction is aided not only by protein-RNA interactions, but also by protein-protein interactions that contribute to increasing the valence of the nucleocapsid protein. Here, we focused on quantifying the mechanisms that control dimer formation. Single-molecule Förster Resonance Energy Transfer enabled us to investigate the conformations of the dimerization domain in the context of the full-length protein as well as the energetics associated with dimerization. Under monomeric conditions, we observed significantly expanded configurations of the dimerization domain (compared to the folded dimer structure), which are consistent with a dynamic conformational ensemble. The addition of unlabeled protein stabilizes a folded dimer configuration with a high mean transfer efficiency, in agreement with predictions based on known structures. Dimerization is characterized by a dissociation constant of ∼ 12 nM at 23 O C and is driven by strong enthalpic interactions between the two protein subunits, which originate from the coupled folding and binding. Interestingly, the dimer structure retains some of the conformational heterogeneity of the monomeric units, and the addition of denaturant reveals that the dimer domain can significantly expand before being completely destabilized. Our findings suggest that the inherent flexibility of the monomer form is required to adopt the specific fold of the dimer domain, where the two subunits interlock with one another. We proposed that the retained flexibility of the dimer form may favor the capture and interactions with RNA, and that the temperature dependence of dimerization may explain some of the previous observations regarding the phase separation propensity of the N protein.

2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895430

RESUMO

Proteins are dynamic systems whose structural preferences determine their function. Unfortunately, building atomically detailed models of protein structural ensembles remains challenging, limiting our understanding of the relationships between sequence, structure, and function. Combining single molecule Förster resonance energy transfer (smFRET) experiments with molecular dynamics simulations could provide experimentally grounded, all-atom models of a protein's structural ensemble. However, agreement between the two techniques is often insufficient to achieve this goal. Here, we explore whether accounting for important experimental details like averaging across structures sampled during a given smFRET measurement is responsible for this apparent discrepancy. We present an approach to account for this time-averaging by leveraging the kinetic information available from Markov state models of a protein's dynamics. This allows us to accurately assess which timescales are averaged during an experiment. We find this approach significantly improves agreement between simulations and experiments in proteins with varying degrees of dynamics, including the well-ordered protein T4 lysozyme, the partially disordered protein apolipoprotein E (ApoE), and a disordered amyloid protein (Aß40). We find evidence for hidden states that are not apparent in smFRET experiments because of time averaging with other structures, akin to states in fast exchange in NMR, and evaluate different force fields. Finally, we show how remaining discrepancies between computations and experiments can be used to guide additional simulations and build structural models for states that were previously unaccounted for. We expect our approach will enable combining simulations and experiments to understand the link between sequence, structure, and function in many settings.

3.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853835

RESUMO

The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge for the field to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of the troponin complex, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for several cardiomyopathy mutations. This unresolved yet functionally-significant linker region has been proposed to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We experimentally and computationally show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker, and we demonstrate that this mutation does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other subunits of the troponin complex, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms controlling the pathogenesis of cardiomyopathies.

4.
Nucleic Acids Res ; 52(5): 2609-2624, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38153183

RESUMO

The SARS-CoV-2 Nucleocapsid (N) protein is responsible for condensation of the viral genome. Characterizing the mechanisms controlling nucleic acid binding is a key step in understanding how condensation is realized. Here, we focus on the role of the RNA binding domain (RBD) and its flanking disordered N-terminal domain (NTD) tail, using single-molecule Förster Resonance Energy Transfer and coarse-grained simulations. We quantified contact site size and binding affinity for nucleic acids and concomitant conformational changes occurring in the disordered region. We found that the disordered NTD increases the affinity of the RBD for RNA by about 50-fold. Binding of both nonspecific and specific RNA results in a modulation of the tail configurations, which respond in an RNA length-dependent manner. Not only does the disordered NTD increase affinity for RNA, but mutations that occur in the Omicron variant modulate the interactions, indicating a functional role of the disordered tail. Finally, we found that the NTD-RBD preferentially interacts with single-stranded RNA and that the resulting protein:RNA complexes are flexible and dynamic. We speculate that this mechanism of interaction enables the Nucleocapsid protein to search the viral genome for and bind to high-affinity motifs.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , RNA Viral , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , Proteínas do Nucleocapsídeo/química , Ligação Proteica , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
5.
J Mol Biol ; 435(24): 168342, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924863

RESUMO

Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. Interaction with CPI-motif peptides induced conformations within CP that bring the cap and stalk closer, while interaction with V-1 moves them away from one another. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wild-type (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.


Assuntos
Proteínas de Capeamento de Actina , Actinas , Proteínas de Capeamento de Actina/química , Ligação Proteica , Regulação Alostérica , Actinas/metabolismo , Peptídeos/química
6.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645735

RESUMO

Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. CPI-motif peptide association induced conformational changes within CP that propagate in one direction, while V-1 association induced conformational changes in the opposite direction. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wildtype (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI-motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.

7.
J Phys Chem B ; 127(26): 5837-5849, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348142

RESUMO

The cellular milieu is a solution crowded with a significant concentration of different components (proteins, nucleic acids, metabolites, etc.). Such a crowded environment affects protein conformations, dynamics, and interactions. Intrinsically disordered proteins and regions are particularly sensitive to these effects. Here, we investigate the impact on an intrinsically disordered tail that flanks a folded domain, the N-terminal domain, and the RNA-binding domain of the SARS-CoV-2 nucleocapsid protein. We mimic the crowded environment of the cell using polyethylene glycol (PEG) and study its impact on protein conformations using single-molecule Förster resonance energy transfer. We found that high-molecular-weight PEG induces a collapse of the disordered N-terminal tail, whereas low-molecular-weight PEG induces a chain expansion. Our data can be explained by accounting for two opposing contributions: favorable interactions between the protein and crowder molecules and screening of excluded volume interactions. We further characterized the interaction between protein and RNA in the presence of crowding agents. While for all PEG molecules tested, we observed an increase in the binding affinity, the trend is not monotonic as a function of the degree of PEG polymerization. This points to the role of nonspecific protein-PEG interactions on binding in addition to the entropic effects due to crowding. To separate the enthalpic and entropic components of the effects, we investigated the temperature dependence of the association constants in the absence and presence of crowders. Finally, we compared the effects of crowding across mutations in the disordered region and found that the threefold difference in association constants for two naturally occurring variants of the SARS-CoV-2 nucleocapsid protein is reduced to almost identical affinities in the presence of crowders. Overall, our data provide new insights into understanding and modeling the contribution of crowding effects on disordered regions, including the impact of interactions between proteins and crowders and their interplay when binding a ligand.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Conformação Proteica , Polietilenoglicóis/química , RNA , Proteínas do Nucleocapsídeo
8.
Proc Natl Acad Sci U S A ; 120(7): e2215371120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749730

RESUMO

The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.


Assuntos
Apolipoproteína E4 , Apolipoproteínas E , Apolipoproteína E4/genética , Apolipoproteína E3/química , Apolipoproteína E2 , Conformação Proteica , Isoformas de Proteínas/metabolismo
9.
Methods Mol Biol ; 2563: 161-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227473

RESUMO

A quantitative understanding of the forces controlling the assembly and functioning of biomolecular condensates requires the identification of phase boundaries at which condensates form as well as the determination of tie-lines. Here, we describe in detail how Fluorescence Correlation Spectroscopy (FCS) provides a versatile approach to estimate phase boundaries of single-component and multicomponent solutions as well as insights about the transport properties of the condensate.


Assuntos
Análise Espectral
10.
Essays Biochem ; 66(7): 875-890, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36416865

RESUMO

Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.


Assuntos
Proteínas Intrinsicamente Desordenadas , Imagem Individual de Molécula , Espectrometria de Fluorescência , Proteínas Intrinsicamente Desordenadas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Biofísica , Conformação Proteica
11.
Nat Commun ; 12(1): 1936, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782395

RESUMO

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Sítios de Ligação , COVID-19/virologia , Dimerização , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica , Domínios Proteicos
12.
Alzheimers Dement ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090700

RESUMO

INTRODUCTION: Triggering receptor expressed on myeloid cells-2 (TREM2) is an immune receptor expressed on microglia that also can become soluble (sTREM2). How TREM2 engages different ligands remains poorly understood. METHODS: We used comprehensive biolayer interferometry (BLI) analysis to investigate TREM2 and sTREM2 interactions with apolipoprotein E (apoE) and monomeric amyloid beta (Aß) (mAß42). RESULTS: TREM2 engagement of apoE was protein mediated with little effect of lipidation, showing slight affinity differences between isoforms (E4 > E3 > E2). Another family member, TREML2, did not bind apoE. Disease-linked TREM2 variants within a "basic patch" minimally impact apoE binding. Instead, TREM2 uses a unique hydrophobic surface to bind apoE, which requires the apoE hinge region. TREM2 and sTREM2 directly bind mAß42 and potently inhibit Aß42 polymerization, suggesting a potential role for soluble sTREM2 in preventing AD pathogenesis. DISCUSSION: These findings demonstrate that TREM2 has at least two ligand-binding surfaces that might be therapeutic targets and uncovers a potential function for sTREM2 in directly inhibiting Aß polymerization.

13.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32587966

RESUMO

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.

14.
Nat Commun ; 10(1): 2474, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171772

RESUMO

Diabetes is a global health problem caused primarily by the inability of pancreatic ß-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of ß-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic ßV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 ß-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in ß-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of ß-cells in diabetes.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica , Gluconeogênese , Glicólise , Secreção de Insulina , Metabolômica , Camundongos , Camundongos Transgênicos , NAD/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteômica
15.
Cell Metab ; 29(2): 430-442.e4, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415925

RESUMO

Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their ß cells (Fh1ßKO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in α cells from hyperglycemic Fh1ßKO and ß-V59M gain-of-function KATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1ßKO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular , Células Secretoras de Glucagon/citologia , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo
16.
Cell Metab ; 26(1): 17-23, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683284

RESUMO

Elevated plasma glucose leads to pancreatic ß cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting ß cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in ß cells in normoglycemia and in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Glicogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Doença de Depósito de Glicogênio/sangue , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/fisiopatologia , Humanos , Células Secretoras de Insulina/patologia , Transdução de Sinais
17.
J Endocrinol ; 233(3): 217-227, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348116

RESUMO

Type 2 diabetes (T2DM) is associated with pancreatic islet dysfunction. Loss of ß-cell identity has been implicated via dedifferentiation or conversion to other pancreatic endocrine cell types. How these transitions contribute to the onset and progression of T2DM in vivo is unknown. The aims of this study were to determine the degree of epithelial-to-mesenchymal transition occurring in α and ß cells in vivo and to relate this to diabetes-associated (patho)physiological conditions. The proportion of islet cells expressing the mesenchymal marker vimentin was determined by immunohistochemistry and quantitative morphometry in specimens of pancreas from human donors with T2DM (n = 28) and without diabetes (ND, n = 38) and in non-human primates at different stages of the diabetic syndrome: normoglycaemic (ND, n = 4), obese, hyperinsulinaemic (HI, n = 4) and hyperglycaemic (DM, n = 8). Vimentin co-localised more frequently with glucagon (α-cells) than with insulin (ß-cells) in the human ND group (1.43% total α-cells, 0.98% total ß-cells, median; P < 0.05); these proportions were higher in T2DM than ND (median 4.53% α-, 2.53% ß-cells; P < 0.05). Vimentin-positive ß-cells were not apoptotic, had reduced expression of Nkx6.1 and Pdx1, and were not associated with islet amyloidosis or with bihormonal expression (insulin + glucagon). In non-human primates, vimentin-positive ß-cell proportion was larger in the diabetic than the ND group (6.85 vs 0.50%, medians respectively, P < 0.05), but was similar in ND and HI groups. In conclusion, islet cell expression of vimentin indicates a degree of plasticity and dedifferentiation with potential loss of cellular identity in diabetes. This could contribute to α- and ß-cell dysfunction in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Vimentina/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/veterinária , Macaca fascicularis , Macaca mulatta
18.
Nat Commun ; 7: 13496, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882918

RESUMO

Insulin secretion from pancreatic ß-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including ß-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in ß-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores ß-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered ß-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced ß-cell mass in diabetes.


Assuntos
Apoptose/fisiologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio/metabolismo , Hiperglicemia/metabolismo , Doenças do Recém-Nascido/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Glicemia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Glucoquinase/genética , Humanos , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Recém-Nascido , Insulina/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Mutação , Ratos , Compostos de Sulfonilureia/farmacologia
19.
J Histochem Cytochem ; 63(8): 575-91, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26216135

RESUMO

Islet non-ß-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-ß-cells to central areas of the islet. In diabetes, the transdifferentiation of non-ß-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-ß-cells contribute to the control of islet function.


Assuntos
Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/citologia , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Microscopia Eletrônica
20.
Nat Commun ; 5: 4639, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145789

RESUMO

Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that ß-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some ß-cells begin expressing glucagon, whilst retaining many ß-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/patologia , Hiperglicemia/patologia , Ilhotas Pancreáticas/ultraestrutura , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Eletrofisiologia/métodos , Glibureto/farmacologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Insulina/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Camundongos Transgênicos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA