Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
JDS Commun ; 5(3): 195-199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646584

RESUMO

During the transition period, dairy cows are often exposed to negative energy balance (NEB), leading to lipid mobilization from adipose tissue into nonesterified fatty acids (NEFA), a common indicator of heightened illness risk. This study aimed to use blood near-infrared (NIR) spectra data to classify NEB into high or low categories, based on early-lactation cow NEFA thresholds. We collected a total of 186 plasma samples from 100 Holstein cows. The samples were categorized into critical thresholds, based on previous literature, of ≥0.60 and ≥0.70 mEq/L for identifying high NEB. Spectral data were preprocessed before the development of the predictive modes, which included the implementation of multiplicative scatter correction, standard normal variate (SNV), and first and second derivatives. The classification was performed using partial least square discriminant analyses (PLS-DA), and predictive performance was assessed using leave-one-out cross-validation. Predictive quality for each class was evaluated through specificity, precision, sensitivity, and F1 score. The study showed promising results, with the SNV technique achieving higher F1 scores. The model found 72.7% specificity, 78.9% precision, 80.8% sensitivity, and 79.8% F1 score to classify animals with NEFA levels of ≥0.60 mEq/L, and 82.1% specificity, 78.7% precision, 80.8% sensitivity, and 79.7% F1 score to classify animals with NEFA levels ≥0.70 mEq/L. These results indicate that NIR spectroscopy could serve as a tool for detecting cows under severe NEB, also showing potential for broader application across the entire transition period, as the spectral signal carried relevant information regarding cow metabolism. Furthermore, the combination of predictors derived from plasma spectra and other cow-level information can lead to more accurate disease alerts, given their relationship with the NEB.

3.
BMC Genomics ; 25(1): 93, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254039

RESUMO

BACKGROUNDING: Stayability, which may be defined as the probability of a cow remaining in the herd until a reference age or at a specific number of calvings, is usually measured late in the animal's life. Thus, if used as selection criteria, it will increase the generation interval and consequently might decrease the annual genetic gain. Measuring stayability at an earlier age could be a reasonable strategy to avoid this problem. In this sense, a better understanding of the genetic architecture of this trait at different ages and/or at different calvings is important. This study was conducted to identify possible regions with major effects on stayability measured considering different numbers of calvings in Nellore cattle as well as pathways that can be involved in its expression throughout the female's productive life. RESULTS: The top 10 most important SNP windows explained, on average, 17.60% of the genetic additive variance for stayability, varying between 13.70% (at the eighth calving) and 21% (at the fifth calving). These SNP windows were located on 17 chromosomes (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 27, and 28), and they harbored a total of 176 annotated genes. The functional analyses of these genes, in general, indicate that the expression of stayability from the second to the sixth calving is mainly affected by genetic factors related to reproductive performance, and nervous and immune systems. At the seventh and eighth calvings, genes and pathways related to animal health, such as density bone and cancer, might be more relevant. CONCLUSION: Our results indicate that part of the target genomic regions in selecting for stayability at earlier ages (from the 2th to the 6th calving) would be different than selecting for this trait at later ages (7th and 8th calvings). While the expression of stayability at earlier ages appeared to be more influenced by genetic factors linked to reproductive performance together with an overall health/immunity, at later ages genetic factors related to an overall animal health gain relevance. These results support that selecting for stayability at earlier ages (perhaps at the second calving) could be applied, having practical implications in breeding programs since it could drastically reduce the generation interval, accelerating the genetic progress.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Feminino , Animais , Bovinos/genética , Fenótipo , Probabilidade , Reprodução/genética
4.
Transl Anim Sci ; 7(1): txad064, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37601954

RESUMO

Sire selection for beef on dairy crosses plays an important role in livestock systems as it may affect future performance and carcass traits of growing and finishing crossbred cattle. The phenotypic variation found in beef on dairy crosses has raised concerns from meat packers due to animals with dairy-type carcass characteristics. The use of morphometric measurements may help to understand the phenotypic structures of sire progeny for selecting animals with greater performance. In addition, due to the relationship with growth, these measurements could be used to early predict the performance until the transition from dairy farms to sales. The objectives of this study were 1) to evaluate the effect of different beef sires and breeds on the morphometric measurements of crossbred calves including cannon bone (CB), forearm (FA), hip height (HH), face length (FL), face width (FW) and growth performance; and (2) to predict the weight gain from birth to transition from dairy farms to sale (WG) and the body weight at sale (BW) using such morphometric measurements obtained at first days of animals' life. CB, FA, HH, FL, FW, and weight at 7 ±â€…5 d (BW7) (Table 1) were measured on 206 calves, from four different sire breeds [Angus (AN), SimAngus (SA), Simmental (SI), and Limousin (LI)], from five farms. To evaluate the morphometric measurements at the transition from dairy farms to sale and animal performance 91 out of 206 calves sourced from four farms, and offspring of two different sires (AN and SA) were used. To predict the WG and BW, 97 calves, and offspring of three different sires (AN, SA, and LI) were used. The data were analyzed using a mixed model, considering farm and sire as random effects. To predict WG and BW, two linear models (including or not the morphometric measurements) were used, and a leave-one-out cross-validation strategy was used to evaluate their predictive quality. The HH and BW7 were 7.67% and 10.7% higher (P < 0.05) in SA crossbred calves compared to AN, respectively. However, the ADG and adjusted body weight to 120 d were 14.3% and 9.46% greater (P < 0.05) in AN compared to SA. The morphometric measurements improved the model's predictive performance for WG and BW. In conclusion, morphometric measurements at the first days of calves' life can be used to predict animals' performance in beef on dairy. Such a strategy could lead to optimized management decisions and greater profitability in dairy farms.

5.
J Mammary Gland Biol Neoplasia ; 28(1): 11, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249685

RESUMO

Many studies on bovine mammary glands focus on one stage of development. Often missing in those studies are repeated measures of development from the same animals. As milk production is directly affected by amount of parenchymal tissue within the udder, understanding mammary gland growth along with visualization of its structures during development is essential. Therefore, analysis of ultrasound and histology data from the same animals would result in better understanding of mammary development over time. Thus, this research aimed to describe mammary gland development using non-invasive and invasive tools to delineate growth rate of glandular tissue responsible for potential future milk production. Mammary gland ultrasound images, biopsy samples, and blood samples were collected from 36 heifer dairy calves beginning at 10 weeks of age, and evaluated at 26, 39, and 52 weeks. Parenchyma was quantified at 10 weeks of age using ultrasound imaging and histological evaluation, and average echogenicity was utilized to quantify parenchyma at later stages of development. A significant negative correlation was detected between average echogenicity of parenchyma at 10 weeks and total adipose as a percent of histological whole tissue at 52 weeks. Additionally, a negative correlation between average daily gain at 10 and 26 weeks and maximum echogenicity at 52 weeks was present. These results suggest average daily gain and mammary gland development prior to 39 weeks of age is associated with development of the mammary gland after 39 weeks. These findings could be predictors of future milk production, however this must be further explored.


Assuntos
Dieta , Obesidade , Bovinos , Animais , Feminino , Glândulas Mamárias Animais/diagnóstico por imagem , Tecido Parenquimatoso , Leite/química
6.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852484

RESUMO

The use of sexed semen at dairy farms has improved heifer replacement over the last decade by allowing greater control over the number of retained females and enabling the selection of dams with superior genetics. Alternatively, beef semen can be used in genetically inferior dairy cows to produce crossbred (beef x dairy) animals that can be sold at a higher price. Although crossbreeding became profitable for dairy farmers, meat cuts from beef x dairy crosses often lack quality and shape uniformity. Technologies for quickly predicting carcass traits for animal grouping before harvest may improve meat cut uniformity in crossbred cattle. Our objective was to develop a deep learning approach for predicting ribeye area and circularity of live animals through 3D body surface images using two neural networks: 1) nested Pyramid Scene Parsing Network (nPSPNet) for extracting features and 2) Convolutional Neural Network (CNN) for estimating ribeye area and circularity from these features. A group of 56 calves were imaged using an Intel RealSense D435 camera. A total of 327 depth images were captured from 30 calves and labeled with masks outlining the calf body to train the nPSPNet for feature extraction. Additional 42,536 depth images were taken from the remaining 26 calves along with three ultrasound images collected for each calf from the 12/13th ribs. The ultrasound images (three by calf) were manually segmented to calculate the average ribeye area and circularity and then paired with the depth images for CNN training. We implemented a nested cross-validation approach, in which all images for one calf were removed (leave-one-out, LOO), and the remaining calves were further divided into training (70%) and validation (30%) sets within each LOO iteration. The proposed model predicted ribeye area with an average coefficient of determination (R2) of 0.74% and 7.3% mean absolute error of prediction (MAEP) and the ribeye circularity with an average R2 of 0.87% and 2.4% MAEP. Our results indicate that computer vision systems could be used to predict ribeye area and circularity in live animals, allowing optimal management decisions toward smart animal grouping in beef x dairy crosses and purebred.


This work proposes a method for predicting ribeye specific carcass traits of beef x dairy crossbred calves from 3D images using deep learning. This method completely automates the measurement of carcass traits, providing an efficient way of grouping calves for breeding programs or meat quality control.


Assuntos
Hibridização Genética , Sêmen , Animais , Bovinos , Fazendas , Feminino , Carne , Ultrassonografia
7.
BMC Genomics ; 23(1): 424, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672696

RESUMO

BACKGROUND: Feed efficiency (FE) related traits play a key role in the economy and sustainability of beef cattle production systems. The accurate knowledge of the physiologic background for FE-related traits can help the development of more efficient selection strategies for them. Hence, multi-trait weighted GWAS (MTwGWAS) and meta-analyze were used to find genomic regions associated with average daily gain (ADG), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), and residual feed intake (RFI). The FE-related traits and genomic information belong to two breeding programs that perform the FE test at different ages: post-weaning (1,024 animals IZ population) and post-yearling (918 animals for the QLT population). RESULTS: The meta-analyze MTwGWAS identified 14 genomic regions (-log10(p -value) > 5) regions mapped on BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29. These regions explained a large proportion of the total genetic variance for FE-related traits across-population ranging from 20% (FCR) to 36% (DMI) in the IZ population and from 22% (RFI) to 28% (ADG) in the QLT population. Relevant candidate genes within these regions (LIPE, LPL, IGF1R, IGF1, IGFBP5, IGF2, INS, INSR, LEPR, LEPROT, POMC, NPY, AGRP, TGFB1, GHSR, JAK1, LYN, MOS, PLAG1, CHCD7, LCAT, and PLA2G15) highlighted that the physiological mechanisms related to neuropeptides and the metabolic signals controlling the body's energy balance are responsible for leading to greater feed efficiency. Integrated meta-analysis results and functional pathway enrichment analysis highlighted the major effect of biological functions linked to energy, lipid metabolism, and hormone signaling that mediates the effects of peptide signals in the hypothalamus and whole-body energy homeostasis affecting the genetic control of FE-related traits in Nellore cattle. CONCLUSIONS: Genes and pathways associated with common signals for feed efficiency-related traits provide better knowledge about regions with biological relevance in physiological mechanisms associated with differences in energy metabolism and hypothalamus signaling. These pleiotropic regions would support the selection for feed efficiency-related traits, incorporating and pondering causal variations assigning prior weights in genomic selection approaches.


Assuntos
Ingestão de Alimentos , Estudo de Associação Genômica Ampla , Ração Animal/análise , Animais , Bovinos/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Genômica , Fenótipo
8.
Meat Sci ; 187: 108771, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220196

RESUMO

The objective of this study was to investigate potential causal relationships among hot carcass weight (HCW), longissimus muscle area (LMA), backfat thickness (BF), Warner-Bratzler shear force (WBSF), and marbling score (MB) traits in Nellore cattle using structural equation models (SEM). The SEM fitted comprises the following links between traits: WBSF → LMA, WBSF → HCW, HCW → LMA, BF → HCW, and BF → MB, where the arrows indicate the causal direction between traits, with structural coefficients posterior means (posterior standard deviation) equal to -0.29 cm2/kg (0.09), 0.43 kg/kg (0.29), 0.10 cm2/kg (0.006), 1.92 kg/mm (0.28), and 0.03 score-grade/mm (0.006), respectively. The final SEM revealed some important putative causal relationships among the traits studied here. The implied causal effects suggest that interventions on meat tenderness and fat content would affect overall growth and muscle deposition. Knowledge regarding potential causal relationships inferred among the traits studied here can have important implications for the genetic selection and management of Nellore cattle for improvement of carcass and meat quality.


Assuntos
Carne , Modelos Teóricos , Animais , Composição Corporal/fisiologia , Bovinos/genética , Carne/análise , Fenótipo
9.
Genome ; 65(4): 229-240, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34860606

RESUMO

Despite several studies on genetic markers and differentially expressed genes related to ribeye area (REA) and tenderness traits in beef cattle, there is divergence in the results regarding the genes associated with these traits. Thirteen genes associated with or exhibiting biological functions that might influence such phenotypes were included in this study. A total of five genes for REA (IGF-1, IGF-2, MSTN, NEDD4, and UBE4A) and eight genes for meat tenderness (CAPN1, CAPN2, CAST, HSPB1, DNAJA1, FABP4, SCD, and PRKAG3) were selected from previous studies on beef cattle. Genes and their respective proteins expression were validated in a commercial population of Nellore cattle using quantitative real-time PCR (RT-qPCR) and advanced mass spectrometry (LC/MS-MS) techniques, respectively. The MSTN gene was upregulated in animals with low REA. The CAPN1, CAPN2, CAST, HSPB1, and DNAJA1 genes were upregulated in animals with tough meat. The proteins translated by these genes were not differentially expressed. Our results confirm the potential of some of the studied genes as biomarkers for carcass and meat quality traits in Nellore cattle.


Assuntos
Carne , Carne Vermelha , Animais , Bovinos/genética , Marcadores Genéticos , Carne/análise , Fenótipo , Proteômica
10.
J Anim Sci ; 99(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34223900

RESUMO

Wearable sensors have been explored as an alternative for real-time monitoring of cattle feeding behavior in grazing systems. To evaluate the performance of predictive models such as machine learning (ML) techniques, data cross-validation (CV) approaches are often employed. However, due to data dependencies and confounding effects, poorly performed validation strategies may significantly inflate the prediction quality. In this context, our objective was to evaluate the effect of different CV strategies on the prediction of grazing activities in cattle using wearable sensor (accelerometer) data and ML algorithms. Six Nellore bulls (average live weight of 345 ± 21 kg) had their behavior visually classified as grazing or not-grazing for a period of 15 d. Elastic Net Generalized Linear Model (GLM), Random Forest (RF), and Artificial Neural Network (ANN) were employed to predict grazing activity (grazing or not-grazing) using 3-axis accelerometer data. For each analytical method, three CV strategies were evaluated: holdout, leave-one-animal-out (LOAO), and leave-one-day-out (LODO). Algorithms were trained using similar dataset sizes (holdout: n = 57,862; LOAO: n = 56,786; LODO: n = 56,672). Overall, GLM delivered the worst prediction accuracy (53%) compared with the ML techniques (65% for both RF and ANN), and ANN performed slightly better than RF for LOAO (73%) and LODO (64%) across CV strategies. The holdout yielded the highest nominal accuracy values for all three ML approaches (GLM: 59%, RF: 76%, and ANN: 74%), followed by LODO (GLM: 49%, RF: 61%, and ANN: 63%) and LOAO (GLM: 52%, RF: 57%, and ANN: 57%). With a larger dataset (i.e., more animals and grazing management scenarios), it is expected that accuracy could be increased. Most importantly, the greater prediction accuracy observed for holdout CV may simply indicate a lack of data independence and the presence of carry-over effects from animals and grazing management. Our results suggest that generalizing predictive models to unknown (not used for training) animals or grazing management may incur poor prediction quality. The results highlight the need for using management knowledge to define the validation strategy that is closer to the real-life situation, i.e., the intended application of the predictive model.


Assuntos
Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Algoritmos , Animais , Bovinos , Modelos Lineares , Masculino , Redes Neurais de Computação
11.
Trop Anim Health Prod ; 53(3): 349, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101031

RESUMO

The objective of this study was to evaluate the accuracy of genomic predictions of growth traits in Nellore cattle. Data from 5064 animals belonging to farms that participate in the Conexão DeltaGen and PAINT breeding programs were used. Genotyping was performed with the Illumina BovineHD BeadChip (777,962 SNPs). After quality control of the genomic data, 412,993 SNPs were used. Deregressed EBVs (DEBVs) were calculated using the estimated breeding values (EBVs) and accuracies of birth weight (BW), weight gain from birth to weaning (GBW), postweaning weight gain (PWG), yearling height (YH), and cow weight (CW) provided by GenSys. Three models were used to estimate marker effects: genomic best linear unbiased prediction (GBLUP), BayesCπ, and improved Bayesian least absolute shrinkage and selection operator (IBLASSO). The prediction ability of genomic estimated breeding value (GEBVs) was estimated by the average Pearson correlation between DEBVs and GEBVs, predicted with the different methodologies in the validation populations. The regression coefficients of DEBVs on GEBVs in the validation population were calculated and used as indicators of prediction bias of GEBV. In general, the Bayesian methods provided slightly more accurate predictions of genomic breeding values than GBLUP. The BayesCπ and IBLASSO were similar for all traits (BW, GBW, PWG, and YH), except for CW. Thus, there does not seem to be a more suitable method for the estimation of SNP effects and genomic breeding values. Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions.


Assuntos
Genoma , Genômica , Animais , Teorema de Bayes , Bovinos/genética , Feminino , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Front Genet ; 11: 923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973876

RESUMO

High-throughput phenotyping technologies are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. Collecting such individual-level information can generate novel traits and potentially improve animal selection and management decisions in livestock operations. One of the most relevant tools used in the dairy and beef industry to predict complex traits is infrared spectrometry, which is based on the analysis of the interaction between electromagnetic radiation and matter. The infrared electromagnetic radiation spans an enormous range of wavelengths and frequencies known as the electromagnetic spectrum. The spectrum is divided into different regions, with near- and mid-infrared regions being the main spectral regions used in livestock applications. The advantage of using infrared spectrometry includes speed, non-destructive measurement, and great potential for on-line analysis. This paper aims to review the use of mid- and near-infrared spectrometry techniques as tools to predict complex dairy and beef phenotypes, such as milk composition, feed efficiency, methane emission, fertility, energy balance, health status, and meat quality traits. Although several research studies have used these technologies to predict a wide range of phenotypes, most of them are based on Partial Least Squares (PLS) and did not considered other machine learning (ML) techniques to improve prediction quality. Therefore, we will discuss the role of analytical methods employed on spectral data to improve the predictive ability for complex traits in livestock operations. Furthermore, we will discuss different approaches to reduce data dimensionality and the impact of validation strategies on predictive quality.

14.
J Anim Sci ; 98(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474602

RESUMO

The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.


Assuntos
Genoma/genética , Genômica , Aprendizado de Máquina , Herança Multifatorial , Animais , Cruzamento , Simulação por Computador , Feminino , Genes Dominantes , Genótipo , Masculino , Fenótipo
15.
Sci Rep ; 10(1): 8770, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471998

RESUMO

Highlighting genomic profiles for geographically distinct subpopulations of the same breed may provide insights into adaptation mechanisms to different environments, reveal genomic regions divergently selected, and offer initial guidance to joint genomic analysis. Here, we characterized similarities and differences between the genomic patterns of Angus subpopulations, born and raised in Canada (N = 382) and Brazil (N = 566). Furthermore, we systematically scanned for selection signatures based on the detection of autozygosity islands common between the two subpopulations, and signals of divergent selection, via FST and varLD tests. The principal component analysis revealed a sub-structure with a close connection between the two subpopulations. The averages of genomic relationships, inbreeding coefficients, and linkage disequilibrium at varying genomic distances were rather similar across them, suggesting non-accentuated differences in overall genomic diversity. Autozygosity islands revealed selection signatures common to both subpopulations at chromosomes 13 (63.77-65.25 Mb) and 14 (22.81-23.57 Mb), which are notably known regions affecting growth traits. Nevertheless, further autozygosity islands along with FST and varLD tests unravel particular sites with accentuated population subdivision at BTAs 7 and 18 overlapping with known QTL and candidate genes of reproductive performance, thermoregulation, and resistance to infectious diseases. Our findings indicate overall genomic similarity between Angus subpopulations, with noticeable signals of divergent selection in genomic regions associated with the adaptation in different environments.


Assuntos
Bovinos/genética , Genoma , Animais , Regulação da Temperatura Corporal/genética , Brasil , Cruzamento , Canadá , Bovinos/classificação , Resistência à Doença/genética , Marcadores Genéticos , Desequilíbrio de Ligação , Reprodução/genética , Especificidade da Espécie
16.
BMC Genomics ; 20(1): 150, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786866

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are utilized in cattle to identify regions or genetic variants associated with phenotypes of interest, and thus, to identify design strategies that allow for the increase of the frequency of favorable alleles. Visual scores are important traits of cattle production in Brazil because they are utilized as selection criteria, helping to choose more harmonious animals. Despite its importance, there are still no studies on the genome association for these traits. This study aimed to identify genome regions associated with the traits of conformation, precocity and muscling, based on a visual score measured at weaning. RESULTS: Bayesian approaches with BayesC and Bayesian LASSO were utilized with 2873 phenotypes of Nellore cattle for a GWAS. The animals were genotyped with Illumina BovineHD BeadChip, and a total of 309,865 SNPs were utilized after quality control. In the analyses, phenotype and deregressed breeding values were utilized as dependent variables; a threshold model was utilized for the former and a linear model for the latter. The association criterion was the percentage of genetic variance explained by SNPs found in 1 Mb-long windows. The Bayesian approach BayesC was better adjusted to the data because it could explain a larger phenotypic variance for both dependent variables. CONCLUSIONS: There were no large effects for the visual scores, indicating that they have a polygenic nature; however, regions in chromosomes 1, 3, 5, 7, 14, 15, 16, 19, 20 and 23 were identified and explained a large part of the genetic variance.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Animais , Cruzamento , Bovinos , Feminino , Variação Genética , Genômica/métodos , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
17.
BMC Genet ; 20(1): 8, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642245

RESUMO

BACKGROUND: Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness. RESULTS: The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes. CONCLUSIONS: GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL.


Assuntos
Haplótipos , Carne , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo
18.
J Anim Sci ; 96(10): 4087-4099, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30053002

RESUMO

Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.


Assuntos
Bovinos/genética , Cromossomos/genética , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único/genética , Puberdade Precoce/genética , Reprodução/genética , Animais , Cruzamento , Bovinos/fisiologia , Feminino , Fertilidade/genética , Genótipo , Fenótipo , Gravidez , Carne Vermelha
19.
J Anim Sci ; 96(9): 3558-3564, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30007290

RESUMO

The objective of this study was to estimate genetic parameters for carcass and meat quality traits, as well as their genetic correlations using pedigree and genomic information. A total of 3,716; 3,702; 3,439; 3,705; and 3,714 records of 12th-13th rib LM area (LMA), backfat thickness (BF), HCW, marbling score (MARB), and Warner-Bratzler peak shear force (WBSF), respectively, were used. Animals were genotyped with BovineHD BeadChip and GeneSeek Genomic Profiler Indicus HD - GGP75Ki panel. The (co)variance components were estimated by Bayesian inference using a multitrait ssGBLUP analysis. The animal model included fixed effects of contemporary group (defined by the combination of farm and year of birth, and management group at yearling) and age of animal at slaughtering as a covariate (linear). Direct additive genetic and residual effects were fitted as random. The posterior means and SD of heritabilities for LMA, BF, HCW, MARB, and WBSF were 0.28 (0.03), 0.21 (0.04), 0.21 (0.04), 0.12 (0.04), and 0.11 (0.03), respectively. The posterior means for genetic correlations between LMA and meat quality were positive and moderate with MARB (0.38 ± 0.12) and negative with WBSF (-0.47 ± 0.12). Low genetic correlations were estimated between BF and WBSF (-0.03 ± 0.16) and between HCW and MARB (-0.04 ± 0.14), indicating that these traits are not controlled by the same set or linked genes. Carcass traits (LMA, BF, and HCW) presented moderate heritability providing quick response to the selection purpose. The estimates of heritability for meat quality traits (MARB and WBSF) were low and indicate that the rate of genetic improvement for these traits would be slow. Genetic correlations indicated that selection for carcass traits would not be strongly antagonistic for improving meat quality.


Assuntos
Carne , Animais , Teorema de Bayes , Composição Corporal/fisiologia , Bovinos , Variação Genética , Masculino , Carne/análise , Carne/normas , Músculo Esquelético/fisiologia , Fenótipo
20.
PLoS One ; 12(6): e0179076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591167

RESUMO

Stayability, which can be defined as the probability of a cow calving at a certain age when given the opportunity, is an important reproductive trait in beef cattle because it is directly related to herd profitability. The objective of this study was to estimate genetic parameters and to identify possible genomic regions associated with the phenotypic expression of stayability in Nellore cows. The variance components were estimated by Bayesian inference using a threshold animal model that included the systematic effects of contemporary group and sexual precocity and the random effects of animal and residual. The SNP effects were estimated by the single-step genomic BLUP method using information of 2,838 animals (2,020 females and 930 sires) genotyped with the Illumina High-Density BeadChip Array (San Diego, CA, USA). The variance explained by windows formed by 200 consecutive SNPs was used to identify genomic regions of largest effect on the expression of stayability. The heritability was 0.11 ± 0.01 when A matrix (pedigree) was used and 0.14 ± 0.01 when H matrix (relationship matrix that combines pedigree information and SNP data) was used. A total of 147 candidate genes for stayability were identified on chromosomes 1, 2, 5, 6, 9 and 20 and on the X chromosome. New candidate regions for stayability were detected, most of them related to reproductive, immunological and central nervous system functions.


Assuntos
Cruzamento , Genoma , Modelos Genéticos , Reprodução/genética , Animais , Teorema de Bayes , Bovinos , Feminino , Genótipo , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA