Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
medRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39281753

RESUMO

In clinical science and practice, text data, such as clinical letters or procedure reports, is stored in an unstructured way. This type of data is not a quantifiable resource for any kind of quantitative investigations and any manual review or structured information retrieval is time-consuming and costly. The capabilities of Large Language Models (LLMs) mark a paradigm shift in natural language processing and offer new possibilities for structured Information Extraction (IE) from medical free text. This protocol describes a workflow for LLM based information extraction (LLM-AIx), enabling extraction of predefined entities from unstructured text using privacy preserving LLMs. By converting unstructured clinical text into structured data, LLM-AIx addresses a critical barrier in clinical research and practice, where the efficient extraction of information is essential for improving clinical decision-making, enhancing patient outcomes, and facilitating large-scale data analysis. The protocol consists of four main processing steps: 1) Problem definition and data preparation, 2) data preprocessing, 3) LLM-based IE and 4) output evaluation. LLM-AIx allows integration on local hospital hardware without the need of transferring any patient data to external servers. As example tasks, we applied LLM-AIx for the anonymization of fictitious clinical letters from patients with pulmonary embolism. Additionally, we extracted symptoms and laterality of the pulmonary embolism of these fictitious letters. We demonstrate troubleshooting for potential problems within the pipeline with an IE on a real-world dataset, 100 pathology reports from the Cancer Genome Atlas Program (TCGA), for TNM stage extraction. LLM-AIx can be executed without any programming knowledge via an easy-to-use interface and in no more than a few minutes or hours, depending on the LLM model selected.

4.
Insights Imaging ; 15(1): 208, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143443

RESUMO

AIM: To determine the effectiveness of functional stress testing and computed tomography angiography (CTA) for diagnosis of obstructive coronary artery disease (CAD). METHODS AND RESULTS: Two-thousand nine-hundred twenty symptomatic stable chest pain patients were included in the international Collaborative Meta-Analysis of Cardiac CT consortium to compare CTA with exercise electrocardiography (exercise-ECG) and single-photon emission computed tomography (SPECT) for diagnosis of CAD defined as ≥ 50% diameter stenosis by invasive coronary angiography (ICA) as reference standard. Generalised linear mixed models were used for calculating the diagnostic accuracy of each diagnostic test including non-diagnostic results as dependent variables in a logistic regression model with random intercepts and slopes. Covariates were the reference standard ICA, the type of diagnostic method, and their interactions. CTA showed significantly better diagnostic performance (p < 0.0001) with a sensitivity of 94.6% (95% CI 92.7-96) and a specificity of 76.3% (72.2-80) compared to exercise-ECG with 54.9% (47.9-61.7) and 60.9% (53.4-66.3), SPECT with 72.9% (65-79.6) and 44.9% (36.8-53.4), respectively. The positive predictive value of CTA was ≥ 50% in patients with a clinical pretest probability of 10% or more while this was the case for ECG and SPECT at pretest probabilities of ≥ 40 and 28%. CTA reliably excluded obstructive CAD with a post-test probability of below 15% in patients with a pretest probability of up to 74%. CONCLUSION: In patients with stable chest pain, CTA is more effective than functional testing for the diagnosis as well as for reliable exclusion of obstructive CAD. CTA should become widely adopted in patients with intermediate pretest probability. SYSTEMATIC REVIEW REGISTRATION: PROSPERO Database for Systematic Reviews-CRD42012002780. CRITICAL RELEVANCE STATEMENT: In symptomatic stable chest pain patients, coronary CTA is more effective than functional testing for diagnosis and reliable exclusion of obstructive CAD in intermediate pretest probability of CAD. KEY POINTS: Coronary computed tomography angiography showed significantly better diagnostic performance (p < 0.0001) for diagnosis of coronary artery disease compared to exercise-ECG and SPECT. The positive predictive value of coronary computed tomography angiography was ≥ 50% in patients with a clinical pretest probability of at least 10%, for ECG ≥ 40%, and for SPECT 28%. Coronary computed tomography angiography reliably excluded obstructive coronary artery disease with a post-test probability of below 15% in patients with a pretest probability of up to 74%.

5.
J Neurointerv Surg ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095085

RESUMO

BACKGROUND: A study was undertaken to assess the effectiveness of open-source large language models (LLMs) in extracting clinical data from unstructured mechanical thrombectomy reports in patients with ischemic stroke caused by a vessel occlusion. METHODS: We deployed local open-source LLMs to extract data points from free-text procedural reports in patients who underwent mechanical thrombectomy between September 2020 and June 2023 in our institution. The external dataset was obtained from a second university hospital and comprised consecutive cases treated between September 2023 and March 2024. Ground truth labeling was facilitated by a human-in-the-loop (HITL) approach, with time metrics recorded for both automated and manual data extractions. We tested three models-Mixtral, Qwen, and BioMistral-assessing their performance on precision, recall, and F1 score across 15 clinical categories such as National Institute of Health Stroke Scale (NIHSS) scores, occluded vessels, and medication details. RESULTS: The study included 1000 consecutive reports from our primary institution and 50 reports from a secondary institution. Mixtral showed the highest precision, achieving 0.99 for first series time extraction and 0.69 for occluded vessel identification within the internal dataset. In the external dataset, precision ranged from 1.00 for NIHSS scores to 0.70 for occluded vessels. Qwen showed moderate precision with a high of 0.85 for NIHSS scores and a low of 0.28 for occluded vessels. BioMistral had the broadest range of precision, from 0.81 for first series times to 0.14 for medication details. The HITL approach yielded an average time savings of 65.6% per case, with variations from 45.95% to 79.56%. CONCLUSION: This study highlights the potential of using LLMs for automated clinical data extraction from medical reports. Incorporating HITL annotations enhances precision and also ensures the reliability of the extracted data. This methodology presents a scalable privacy-preserving option that can significantly support clinical documentation and research endeavors.

8.
Radiol Artif Intell ; 6(5): e230502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39017033

RESUMO

Purpose To develop and evaluate a publicly available deep learning model for segmenting and classifying cardiac implantable electronic devices (CIEDs) on Digital Imaging and Communications in Medicine (DICOM) and smartphone-based chest radiographs. Materials and Methods This institutional review board-approved retrospective study included patients with implantable pacemakers, cardioverter defibrillators, cardiac resynchronization therapy devices, and cardiac monitors who underwent chest radiography between January 2012 and January 2022. A U-Net model with a ResNet-50 backbone was created to classify CIEDs on DICOM and smartphone images. Using 2321 chest radiographs in 897 patients (median age, 76 years [range, 18-96 years]; 625 male, 272 female), CIEDs were categorized into four manufacturers, 27 models, and one "other" category. Five smartphones were used to acquire 11 072 images. Performance was reported using the Dice coefficient on the validation set for segmentation or balanced accuracy on the test set for manufacturer and model classification, respectively. Results The segmentation tool achieved a mean Dice coefficient of 0.936 (IQR: 0.890-0.958). The model had an accuracy of 94.36% (95% CI: 90.93%, 96.84%; 251 of 266) for CIED manufacturer classification and 84.21% (95% CI: 79.31%, 88.30%; 224 of 266) for CIED model classification. Conclusion The proposed deep learning model, trained on both traditional DICOM and smartphone images, showed high accuracy for segmentation and classification of CIEDs on chest radiographs. Keywords: Conventional Radiography, Segmentation Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Júdice de Mattos Farina and Celi in this issue.


Assuntos
Aprendizado Profundo , Desfibriladores Implantáveis , Radiografia Torácica , Smartphone , Humanos , Idoso , Feminino , Masculino , Adolescente , Radiografia Torácica/normas , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Adulto , Adulto Jovem , Marca-Passo Artificial
9.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691404

RESUMO

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Assuntos
Radiologia , Radiologia/métodos , Radiologia/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
Curr Opin Rheumatol ; 36(4): 267-273, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533807

RESUMO

PURPOSE OF REVIEW: To evaluate the current applications and prospects of artificial intelligence and machine learning in diagnosing and managing axial spondyloarthritis (axSpA), focusing on their role in medical imaging, predictive modelling, and patient monitoring. RECENT FINDINGS: Artificial intelligence, particularly deep learning, is showing promise in diagnosing axSpA assisting with X-ray, computed tomography (CT) and MRI analyses, with some models matching or outperforming radiologists in detecting sacroiliitis and markers. Moreover, it is increasingly being used in predictive modelling of disease progression and personalized treatment, and could aid risk assessment, treatment response and clinical subtype identification. Variable study designs, sample sizes and the predominance of retrospective, single-centre studies still limit the generalizability of results. SUMMARY: Artificial intelligence technologies have significant potential to advance the diagnosis and treatment of axSpA, providing more accurate, efficient and personalized healthcare solutions. However, their integration into clinical practice requires rigorous validation, ethical and legal considerations, and comprehensive training for healthcare professionals. Future advances in artificial intelligence could complement clinical expertise and improve patient care through improved diagnostic accuracy and tailored therapeutic strategies, but the challenge remains to ensure that these technologies are validated in prospective multicentre trials and ethically integrated into patient care.


Assuntos
Inteligência Artificial , Espondiloartrite Axial , Aprendizado de Máquina , Humanos , Espondiloartrite Axial/diagnóstico , Aprendizado Profundo , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
11.
JAMA ; 331(15): 1320-1321, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497956

RESUMO

This study compares 2 large language models and their performance vs that of competing open-source models.


Assuntos
Inteligência Artificial , Diagnóstico por Imagem , Anamnese , Idioma
13.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228979

RESUMO

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

14.
Br J Clin Pharmacol ; 90(3): 649-661, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728146

RESUMO

AIMS: To explore international undergraduate pharmacy students' views on integrating artificial intelligence (AI) into pharmacy education and practice. METHODS: This cross-sectional institutional review board-approved multinational, multicentre study comprised an anonymous online survey of 14 multiple-choice items to assess pharmacy students' preferences for AI events in the pharmacy curriculum, the current state of AI education, and students' AI knowledge and attitudes towards using AI in the pharmacy profession, supplemented by 8 demographic queries. Subgroup analyses were performed considering sex, study year, tech-savviness, and prior AI knowledge and AI events in the curriculum using the Mann-Whitney U-test. Variances were reported for responses in Likert scale format. RESULTS: The survey gathered 387 pharmacy student opinions across 16 faculties and 12 countries. Students showed predominantly positive attitudes towards AI in medicine (58%, n = 225) and expressed a strong desire for more AI education (72%, n = 276). However, they reported limited general knowledge of AI (63%, n = 242) and felt inadequately prepared to use AI in their future careers (51%, n = 197). Male students showed more positive attitudes towards increasing efficiency through AI (P = .011), while tech-savvy and advanced-year students expressed heightened concerns about potential legal and ethical issues related to AI (P < .001/P = .025, respectively). Students who had AI courses as part of their studies reported better AI knowledge (P < .001) and felt more prepared to apply it professionally (P < .001). CONCLUSIONS: Our findings underline the generally positive attitude of international pharmacy students towards AI application in medicine and highlight the necessity for a greater emphasis on AI education within pharmacy curricula.


Assuntos
Estudantes de Farmácia , Humanos , Masculino , Estudos Transversais , Inteligência Artificial , Inquéritos e Questionários , Currículo
16.
J Pathol ; 262(3): 310-319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38098169

RESUMO

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload. In this study, we hypothesised that large language models (LLMs), such as the generative pre-trained transformer 4 (GPT-4), can extract structured data from unstructured plain language reports using a zero-shot approach without requiring any re-training. We tested this hypothesis by utilising GPT-4 to extract information from histopathological reports, focusing on two extensive sets of pathology reports for colorectal cancer and glioblastoma. We found a high concordance between LLM-generated structured data and human-generated structured data. Consequently, LLMs could potentially be employed routinely to extract ground truth data for machine learning from unstructured pathology reports in the future. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glioblastoma , Medicina de Precisão , Humanos , Aprendizado de Máquina , Reino Unido
17.
Sci Rep ; 13(1): 20159, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978240

RESUMO

Large language models (LLMs) have shown potential in various applications, including clinical practice. However, their accuracy and utility in providing treatment recommendations for orthopedic conditions remain to be investigated. Thus, this pilot study aims to evaluate the validity of treatment recommendations generated by GPT-4 for common knee and shoulder orthopedic conditions using anonymized clinical MRI reports. A retrospective analysis was conducted using 20 anonymized clinical MRI reports, with varying severity and complexity. Treatment recommendations were elicited from GPT-4 and evaluated by two board-certified specialty-trained senior orthopedic surgeons. Their evaluation focused on semiquantitative gradings of accuracy and clinical utility and potential limitations of the LLM-generated recommendations. GPT-4 provided treatment recommendations for 20 patients (mean age, 50 years ± 19 [standard deviation]; 12 men) with acute and chronic knee and shoulder conditions. The LLM produced largely accurate and clinically useful recommendations. However, limited awareness of a patient's overall situation, a tendency to incorrectly appreciate treatment urgency, and largely schematic and unspecific treatment recommendations were observed and may reduce its clinical usefulness. In conclusion, LLM-based treatment recommendations are largely adequate and not prone to 'hallucinations', yet inadequate in particular situations. Critical guidance by healthcare professionals is obligatory, and independent use by patients is discouraged, given the dependency on precise data input.


Assuntos
Medicina , Doenças Musculoesqueléticas , Masculino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Retrospectivos , Idioma , Imageamento por Ressonância Magnética
18.
Acta Radiol Open ; 12(10): 20584601231213740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034076

RESUMO

Background: The growing role of artificial intelligence (AI) in healthcare, particularly radiology, requires its unbiased and fair development and implementation, starting with the constitution of the scientific community. Purpose: To examine the gender and country distribution among academic editors in leading computer science and AI journals. Material and Methods: This cross-sectional study analyzed the gender and country distribution among editors-in-chief, senior, and associate editors in all 75 Q1 computer science and AI journals in the Clarivate Journal Citations Report and SCImago Journal Ranking 2022. Gender was determined using an open-source algorithm (Gender Guesser™), selecting the gender with the highest calibrated probability. Result: Among 4,948 editorial board members, women were underrepresented in all positions (editors-in-chief/senior editors/associate editors: 14%/18%/17%). The proportion of women correlated positively with the SCImago Journal Rank indicator (ρ = 0.329; p = .004). The U.S., the U.K., and China comprised 50% of editors, while Australia, Finland, Estonia, Denmark, the Netherlands, the U.K., Switzerland, and Slovenia had the highest women editor representation per million women population. Conclusion: Our results highlight gender and geographic disparities on leading computer science and AI journal editorial boards, with women being underrepresented in all positions and a disproportional relationship between the Global North and South.

19.
Radiology ; 309(1): e230806, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787671

RESUMO

Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.


Assuntos
Aprendizado Profundo , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Radiografia , Bases de Dados Factuais , Pacientes Internados
20.
Joint Bone Spine ; 91(3): 105651, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797827

RESUMO

Rheumatic disorders present a global health challenge, marked by inflammation and damage to joints, bones, and connective tissues. Accurate, timely diagnosis and appropriate management are crucial for favorable patient outcomes. Magnetic resonance imaging (MRI) has become indispensable in rheumatology, but interpretation remains laborious and variable. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), offers a means to improve and advance MRI analysis. This review examines current AI applications in rheumatology MRI analysis, addressing diagnostic support, disease classification, activity assessment, and progression monitoring. AI demonstrates promise, with high sensitivity, specificity, and accuracy, achieving or surpassing expert performance. The review also discusses clinical implementation challenges and future research directions to enhance rheumatic disease diagnosis and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA