Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(2): 213-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577024

RESUMO

Titan is a key planetary body for astrobiology, with the presence of a subsurface ocean and a dense atmosphere, in which complex chemistry is known to occur. Approximately 1-Titan-year after the Cassini-Huygens mission arrived in the saturnian system, Dragonfly rotorcraft will land on Titan's surface by 2034 for an exhaustive geophysical and chemical investigation of the Shangri-La organic sand sea region. Among the four instruments onboard Dragonfly, the Dragonfly Mass Spectrometer (DraMS) is dedicated to analyze the chemical composition of surface samples and noble gases in the atmosphere. One of the DraMS analysis modes, the Gas Chromatograph-Mass Spectrometer (GC-MS), is devoted to the detection and identification of organic molecules that could be involved in the development of a prebiotic chemistry or even representative of traces of past or present life. Therefore, DraMS-GC subsystem should be optimized to detect and identify relevant organic compounds to meet this objective. This work is focused on the experimental methods employed to select the chromatographic column to be integrated in DraMS-GC, to assess the analytical performances of the column selected, and also to assess the performances of the second DraMS-GC column, which is devoted to the separation of organic enantiomers. Four different stationary phases have been tested to select the most relevant one for the separation of the targeted chemical species. The results show that the stationary phase composed of polymethyl (95%) diphenyl (5%) siloxane is the best compromise in terms of efficiency, robustness, and retention times of the molecules. The combination of the general and the chiral columns in DraMS is perfectly suited to in situ chemical analysis on Titan and for the detection of expected diverse and complex organic compounds.


Assuntos
Odonatos , Saturno , Animais , Exobiologia/métodos , Espectrometria de Massas , Compostos Orgânicos , Atmosfera/química , Meio Ambiente Extraterreno
2.
Eur J Med Chem ; 150: 457-478, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29547833

RESUMO

We have synthesized a wide array of structurally related amphiphilic compounds, containing a functionalized pyrrolidine polar group coupled to different ether-linked hydrocarbon chains, to generate novel structures with antitumor activity. These newly synthesized amphiphilic pyrrolidine-derived compounds were classified in three different sub-libraries regarding the number of hydroxyl groups substituting the pyrrolidine moiety at C3 and C4. Pyrrolidine compounds with one or none hydroxyl groups showed a potent cell killing activity against pancreatic cancer cells, but they lacked selectivity for tumor cells. Pyrrolidine compounds with two hydroxyl groups induced cell death in a wide variety of pancreatic cancer cell lines, and they were somewhat less cytotoxic to normal non-tumor cells. Among these latter compounds, the diol-derived pyrrolidine 20 ((2R,3R,4S)-2-{(9Z)-hexadec-9-en-1-yloxy]methyl}pyrrolidine-3,4-diol) induced autophagy and a potent apoptotic response in pancreatic ductal adenocarcinoma cells, which was inhibited by Bcl-XL overexpression and by caspase inhibition, in a way similar to that of the amphiphilic ether lipid edelfosine, with which it was compared. Pharmacological and genetic inhibition of autophagy potentiated 20-mediated apoptosis. These structure-activity relationship studies point out the importance of the diol polar group and aliphatic side chain of 20 in promoting apoptosis against pancreatic cancer cells in a rather controlled way, and some additional subtle modifications were found to be potential modulators of the cytotoxic activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Pirrolidinas/farmacologia , Tensoativos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Pancreáticas/patologia , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
3.
Environ Manage ; 60(5): 852-866, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28856400

RESUMO

Spatio-temporal trends in infrastructure footprints, energy production, and landscape alteration were assessed for the Eagle Ford Shale of Texas. The period of analysis was over four 2-year periods (2006-2014). Analyses used high-resolution imagery, as well as pipeline data to map EF infrastructure. Landscape conditions from 2006 were used as baseline. Results indicate that infrastructure footprints varied from 94.5 km2 in 2008 to 225.0 km2 in 2014. By 2014, decreased land-use intensities (ratio of land alteration to energy production) were noted play-wide. Core-area alteration by period was highest (3331.6 km2) in 2008 at the onset of play development, and increased from 582.3 to 3913.9 km2 by 2014, though substantial revegetation of localized core areas was observed throughout the study (i.e., alteration improved in some areas and worsened in others). Land-use intensity in the eastern portion of the play was consistently lower than that in the western portion, while core alteration remained relatively constant east to west. Land alteration from pipeline construction was ~65 km2 for all time periods, except in 2010 when alteration was recorded at 47 km2. Percent of total alteration from well-pad construction increased from 27.3% in 2008 to 71.5% in 2014. The average number of wells per pad across all 27 counties increased from 1.15 to 1.7. This study presents a framework for mapping landscape alteration from oil and gas infrastructure development. However, the framework could be applied to other energy development programs, such as wind or solar fields, or any other regional infrastructure development program. Landscape alteration caused by hydrocarbon pipeline installation in Val Verde County, Texas.


Assuntos
Conservação dos Recursos Naturais/métodos , Fontes Geradoras de Energia , Recursos Naturais/provisão & distribuição , Indústria de Petróleo e Gás , Animais , Ecossistema , Centrais Elétricas , Texas
4.
Biochimie ; 116: 141-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188110

RESUMO

Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H: quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using ß-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.


Assuntos
Acrilamidas/farmacologia , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/metabolismo , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Immunoblotting , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1
5.
J Hematol Oncol ; 7: 33, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731302

RESUMO

BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD19/imunologia , Linfoma de Burkitt/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Autophagy ; 10(4): 603-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487122

RESUMO

APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.


Assuntos
Acrilamidas/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia/patologia , Linfoma/patologia , NAD/antagonistas & inibidores , Piperidinas/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , NAD/biossíntese , Espécies Reativas de Oxigênio/metabolismo
7.
Leuk Lymphoma ; 55(9): 2141-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24283753

RESUMO

APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.


Assuntos
Acrilamidas/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos/farmacologia , Piperidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Linfoma/tratamento farmacológico , Linfoma/mortalidade , Linfoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos SCID , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Blood ; 117(24): 6552-61, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21511956

RESUMO

In the bone marrow (BM), stromal cells constitute a supportive tissue indispensable for the generation of pro-B/pre-BI, pre-BII, and immature B lymphocytes. IL-7-producing stromal cells constitute a cellular niche for pro-B/pre-BI cells, but no specific stromal cell microenvironment was identified for pre-BII cells expressing a functional pre-B cell receptor (pre-BCR). However expression of the pre-BCR represents a crucial checkpoint during B-cell development. We recently demonstrated that the stromal cell derived-galectin1 (GAL1) is a ligand for the pre-BCR, involved in the proliferation and differentiation of normal mouse pre-BII cells. Here we show that nonhematopoietic osteoblasts and reticular cells in the BM express GAL1. We observed that pre-BII cells, unlike the other B-cell subsets, were specifically localized in close contact with GAL1(+) reticular cells. We also determined that IL-7(+) and GAL1(+) cells represent 2 distinct mesenchymal populations with different BM localization. These results demonstrate the existence of a pre-BII specific stromal cell niche and indicate that early B cells move from IL-7(+) to GAL1(+) supportive BM niches during their development.


Assuntos
Medula Óssea , Galectina 1/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Nicho de Células-Tronco/fisiologia , Células Estromais/fisiologia , Animais , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/imunologia , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Nicho de Células-Tronco/citologia , Nicho de Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
9.
Blood ; 113(23): 5878-86, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19329777

RESUMO

Activation of the pre-B-cell receptor (pre-BCR) in the bone marrow depends on both tonic and ligand-induced signaling and leads to pre-BII-cell proliferation and differentiation. Using normal mouse bone marrow pre-BII cells, we demonstrate that the ligand-induced pre-BCR activation depends on pre-BCR/galectin-1/integrin interactions leading to pre-BCR clustering at the pre-BII/stromal cell synapse. In contrast, heparan sulfates, shown to be pre-BCR ligands in mice, are not implicated in pre-BCR relocalization. Inhibition of pre-BCR/galectin-1/integrin interactions has functional consequences, since pre-BII-cell proliferation and differentiation are impaired in an in vitro B-cell differentiation assay, without affecting cellular apoptosis. Most strikingly, although galectin-1-deficient mice do not show an apparent B-cell phenotype, the kinetics of de novo B-cell reconstitution after hydroxyurea treatment indicates a specific delay in pre-BII-cell recovery due to a decrease in pre-BII-cell differentiation and proliferation. Thus, although it remains possible that the pre-BCR interacts with other ligands, these results highlight the role played by the stromal cell-derived galectin-1 for the efficient development of normal pre-BII cells and suggest the existence of pre-BII-specific stromal cell niches in normal bone marrow.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Galectina 1/metabolismo , Células Estromais/citologia , Células Estromais/imunologia , Animais , Linfócitos B/metabolismo , Linhagem Celular , Proliferação de Células , Galectina 1/deficiência , Galectina 1/genética , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Células Precursoras de Linfócitos B/imunologia , Células Estromais/metabolismo
10.
Rev Prat ; 57(9): 947-57, 2007 May 15.
Artigo em Francês | MEDLINE | ID: mdl-17695674

RESUMO

Diagnosis of osteitis/arthritis requires clinical, microbiological and radiological data. Good quality samples must be obtained before antibiotic therapy is introduced to identify causative microorganisms. New technical methods such as PCR can improve the diagnosis. X-ray radiograph is always performed when osteitis is suspected, even if the diagnosis can be difficult since abnormalities are present late in the course of the disease. MRI is the best method to establish the diagnosis of osteitis or arthritis. Scintigraphy can be an interesting investigation since it can be promptly performed even in patients with foreign material. New technical such as PET-Scan could be interesting to establish the diagnosis. Collaboration between clinicians, microbiologists and radiologists is essential to establish the diagnosis in order to target the appropriate treatment and to improve the prognosis.


Assuntos
Infecções Bacterianas/diagnóstico , Doenças Ósseas/diagnóstico , Doenças Ósseas/microbiologia , Artropatias/diagnóstico , Artropatias/microbiologia , Infecções Bacterianas/diagnóstico por imagem , Doenças Ósseas/diagnóstico por imagem , Humanos , Artropatias/diagnóstico por imagem , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA