Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(25): 5181-5192, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864283

RESUMO

The development of luminescent molecular materials has advanced rapidly in recent decades, primarily driven by the synthesis of novel emissive compounds and a deeper understanding of excited-state mechanisms. Herein, we report a streamlined synthetic approach to light-emitting diazapolyoxa- and polyazamacrocycles N2CnOxQ and NyCnQ (n = 3-10; x = 2, 3; y = 2-5), incorporating a 2,3-diphenylquinoxaline residue (DPQ). This synthetic strategy based on macrocyclization through Pd-catalyzed amination reaction yields the target macrocycles in good or high yields (46-92%), enabling precise control over their structural parameters. A key role of the PhPF-tBu ligand belonging to the JosiPhos series in this macrocyclization was elucidated through DFT computation. This macrocyclization reaction eliminates the need for complex protecting-deprotecting procedures of secondary amine groups, offering a convenient and scalable method for the preparation of target compounds. Moreover, it boasts a potentially broad substrate scope, making it promising for structure-properties studies within photophysics, sensor development, and material synthesis. Photophysical properties of representative macrocycles were investigated, employing spectroscopic techniques and DFT computation. It was demonstrated that DPQ-containing macrocycles display aggregation-induced emission in a DCM-hexane solvent mixture despite the presence of flexible tethers within their structures. Single-crystal X-ray diffraction analysis of a representative compound N2C8O3Q allowed us to gain deeper insight into its molecular structure and AIE behaviour. The emissive aggregates of the N2C10O3Q macrocycle were immobilized on filter paper yielding AIE-exhibiting test strips for measuring acidity in vapors and in aqueous media.

2.
J Org Chem ; 89(12): 8407-8419, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38853362

RESUMO

This work investigates the electron-donating capabilities of two 10-π electron nitrogen bridgehead bicyclic [5,6]-fused ring systems, imidazo[1,2-a]pyridine and imidazo[1,5-a]pyridine rings. Eight compounds with varying positions of electron-withdrawing moieties (TCF or DCI) coupled to the imidazopyridine ring were synthesized and studied. DCI-containing compounds (Ib-IVb) exhibited a purely dipolar nature with broad absorption bands, weak fluorescence, large Stokes shifts, and strong solvatochromism. In contrast, TCF-containing compounds (Ia-IVa) demonstrated diverse properties. Imidazo[1,2-a]pyridine derivatives Ia and IIa were purely dipolar, while imidazo[1,5-a]pyridine derivatives IIIa and IVa displayed a cyanine-like character with intense absorption and higher quantum yields of emission. The observed gradual red shift in optical properties with changing electron-donor groups (IIb < Ib < IIIb < IVb) and (IIa < Ia < IIIa < IVa) underscores the stronger electron-donor character of imidazo[1,5-a]pyridine compared to that of imidazo[1,2-a]pyridine. Furthermore, crystalline powders of imidazo[1,2-a]pyridine derivatives exhibited fluorescence despite minimal emission in solution. Two compounds (Ib and IVa) were successfully formulated into nanoparticles for potential in vivo imaging applications in zebrafish embryos.

3.
J Chem Theory Comput ; 19(17): 5938-5957, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37641958

RESUMO

A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.

4.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240061

RESUMO

Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.


Assuntos
Alcinos , Nitrilas , Reação de Cicloadição
5.
Talanta ; 250: 123745, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870285

RESUMO

Cysteine (Cys) is subject to a variety of reversible post-translational modifications such as formation of sulfenic acid (Cys-SOH). If this modification is often involved in normal biological activities, it can also be the result of oxidative damage. Indeed, oxidative stress yields abnormal cysteine oxidations that affect protein function and structure and can lead to neurodegenerative diseases. In a context of population ageing, validation of novel biomarkers for detection of neurodegenerative diseases is important. However, Cys-SOH proteins investigation in large human cohorts is challenging due to their low abundance and lability under endogenous conditions. To improve the detection specificity towards the oxidized protein subpopulation, we developed a method that makes use of a mass spectrometer coupled with visible laser induced dissociation (LID) to add a stringent optical specificity to the mass selectivity. Since peptides do not naturally absorb in the visible range, this approach relies on the proper chemical derivatization of Cys-SOH with a chromophore functionalized with a cyclohexanedione. To compensate for the significant variability in total protein expression within the samples and any experimental bias, a normalizing strategy using free thiol (Cys-SH) cysteine peptides derivatized with a maleimide chromophore as internal references was used. Thanks to the differential tagging, oxidative ratios were then obtained for 69 Cys-containing peptides from 19 proteins tracked by parallel reaction monitoring (PRM) LID, in a cohort of 49 human plasma samples from Alzheimer disease (AD) patients. A statistical analysis indicated that, for the proteins monitored, the Cys oxidative ratio does not correlate with the diagnosis of AD. Nevertheless, the PRM-LID method allows the unbiased, sensitive and robust relative quantification of Cys oxidation within cohorts of samples.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico , Proteínas Sanguíneas/metabolismo , Cisteína/análogos & derivados , Cisteína/análise , Humanos , Maleimidas , Espectrometria de Massas , Oxirredução , Peptídeos/química , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Compostos de Sulfidrila/química
6.
Anal Chem ; 93(5): 2907-2915, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33522244

RESUMO

Cysteine (Cys) is prone to diverse post-translational modifications in proteins, including oxidation into sulfenic acid (Cys-SOH) by reactive oxygen species generated under oxidative stress. Detection of low-concentration and metastable Cys-SOH within complex biological matrices is challenging due to the dynamic concentration range of proteins in the samples. Herein, visible laser-induced dissociation (LID) implemented in a mass spectrometer was used for streamlining the detection of Cys oxidized proteins owing to proper derivatization of Cys-SOH with a chromophore tag functionalized with a cyclohexanedione group. Once grafted, peptides undergo a high fragmentation yield under LID, leading concomitantly to informative backbone ions and to a chromophore reporter ion. Seventy-nine percent of the Cys-containing tryptic peptides derived from human serum albumin and serotransferrin tracked by parallel reaction monitoring (PRM) were detected as targets subjected to oxidation. These candidates as well as Cys-containing peptides predicted by in silico trypsin digestion of five other human plasma proteins were then tracked in real plasma samples to pinpoint the endogenous Cys-SOH subpopulation. Most of the targeted peptides were detected in all plasma samples by LID-PRM, with significant differences in their relative amounts. By eliminating the signal of interfering co-eluted compounds, LID-PRM surpasses conventional HCD (higher-energy collisional dissociation)-PRM in detecting grafted Cys-SOH-containing peptides and allows now to foresee clinical applications in large human cohorts.


Assuntos
Cisteína , Ácidos Sulfênicos , Proteínas Sanguíneas , Cisteína/análogos & derivados , Cisteína/metabolismo , Humanos , Espectrometria de Massas , Oxirredução , Estresse Oxidativo
7.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imageamento por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
8.
Angew Chem Int Ed Engl ; 60(5): 2446-2454, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089921

RESUMO

Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.

9.
RSC Adv ; 10(67): 40806-40814, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519213

RESUMO

Optical birefringence in polymeric films containing azo-chromophores is an important feature related to the development of several technologies such as electro-optic modulators, optical switching, and optical gates, to cite a few. Therefore, it is essential to understand the main underlying mechanisms describing dynamic switching. In this context, we have investigated the optical birefringence performance of a guest-host film produced from a poly(methyl methacrylate) (PMMA) matrix containing a V-shaped azo-chromophore, which exhibited a larger optical response in comparison to the linear chromophores. The optical birefringence was induced by a linearly polarized diode laser (532 nm, writing laser), while a low-intensity HeNe (632.8 nm) laser and a tungsten-halogen lamp are employed, respectively, to monitor the optical storage and the absorption change during the photoinduced birefringence. Our results pointed out that the guest-host film presents maximum residual optical memory at around 50% and local optical birefringence at around 3.3 × 10-4 in the low concentration and intensity regimes. The high optical birefringence obtained in guest-host films was attributed to the considerable photoisomerization quantum yield in the solid-state (0.15 ± 0.02 for 532 nm). Besides, we have shown that the switching mechanism is driven by angular hole-burning during the first seconds after excitation, and, subsequently, molecular reorientation quickly rises, dominating the photochemical process. The latter mechanism is highly efficient in converting cis to trans molecules (100%), which is responsible for the high residual optical memory obtained. In order to better understand the isomerization mechanism of the azo-chromophore/PMMA film, we performed quantum chemical calculations within the DFT framework. The electronic transitions of the azo-chromophore isomers were determined using the TD-DFT method and potential energy curves (PECs) were constructed to investigate the possibility of the thermal-isomerization process of the V-shaped azo-chromophore through both rotation and inversion mechanisms. For both mechanisms, the amplitude of the energy barrier and activation energy for thermal isomerization are determined and the results are discussed.

10.
J Org Chem ; 84(16): 9965-9974, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31319662

RESUMO

In the context of molecular engineering of push-pull dipolar dyes, we introduce a structural modification of the well-known electron-accepting group 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF). Introduction of a (benzo[d]thiazol-2-yl) moiety failed, and unexpected structures were obtained. On the other hand, phenylthio and phenylsulfonyl entities were successfully introduced at position 3 of the 2-(dicyanomethylidene)-2,5-dihydrofuran ring, giving access to new electron-acceptor groups and dipolar fluorophores displaying near-infrared emission in solution or in the solid state, brighter than their TCF analogues.

11.
J Phys Chem Lett ; 10(9): 2214-2219, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30958006

RESUMO

The intramolecular cooperative effect in branched molecules is a consequence of the interaction and extent of electronic coupling among the different axes of charge transfer. Such an effect is the key to obtain remarkable nonlinear optical response in molecular systems. Here we show that triphenylamine derivative molecules containing only two branches present the strongest electronic interaction between them at the excited state, generating exponential enhancement of the 2PA cross section. The primary factor for such behavior was ascribed to the substantial extent and interaction of the π-electron delocalization promoted by the strong electron-donating and acceptor antisymmetrical groups present in each branch. However, for the three-branch molecules we observed an anticooperative effect, i.e., the 2PA cross section decreases as compared to the one-branch structure as we normalized the signal by the effective π-electron number in each molecule.

12.
Bioconjug Chem ; 29(12): 4149-4159, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30428254

RESUMO

Photosensitizing nanogels were obtained through a surfactant-free single-step protocol by using a porphyrin-based cross-linker for stabilizing self-assembled nanosized aggregates of thermoresponsive copolymers. Nanogels with varying amounts of porphyrin retained the singlet oxygen generation ability of the porphyrin core and were also capable of inducing temperature increase upon irradiation at 635 nm. Photoinduced killing efficiency was tested against three cell lines: human breast adenocarcinoma (MDA-MB-231 and MCF7) and pancreatic adenocarcinoma (AsPC-1) cells, and a predominant photodynamic mechanism at 450 nm and a mixed photodynamic and photothermal effect at 635 nm was observed. This innovative access to photosensitizing nanogels is a proof of concept, and opens new perspectives toward the preparation of optimized nanophotosensitizers.


Assuntos
Géis/química , Nanoestruturas/química , Porfirinas/química , Tensoativos/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Hipertermia Induzida/métodos , Fotoquimioterapia/métodos
13.
ACS Appl Mater Interfaces ; 10(30): 25154-25165, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979019

RESUMO

Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.


Assuntos
Nanopartículas , Corantes Fluorescentes , Polímeros
14.
Opt Lett ; 42(11): 2236-2238, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569890

RESUMO

Light-induced self-written (LISW) optical waveguides were fabricated for the first time, to the best of our knowledge, using a photopolymerizable resin system formed by 1550 nm pulse laser light. A two-photon absorption (TPA) chromophore with a TPA cross section of several hundred Goeppert-Mayer (GM) at 1550 nm was used. Furthermore, the optical interconnection between a single-mode fiber and a fiber Bragg grating was demonstrated by the present technique, using one-way irradiation of 1550 nm laser light through the single-mode fiber. The LISW waveguide formation using 1550 nm laser light offers a new and promising alternative route for optical interconnection in silicon photonics technology.

16.
Molecules ; 21(5)2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187343

RESUMO

In this work, the synthesis and the nonlinear absorption and population dynamics investigation of a series of zinc phthalocyanines (ZnPcs) dissolved in chloroform are reported. In order to determine the relevant spectroscopic parameters, such as absorption cross-sections of singlet and triplet excited states, fluorescence relaxation times, intersystem crossing, radiative decay and internal conversion, different optical and spectroscopic techniques were used. By single pulse and pulse train Z-scan techniques, respectively, singlet and triplet excited states' absorption cross-section were determined at 532 nm. Furthermore, the intersystem crossing time was obtained by using both techniques combined with the fluorescence lifetime determined by time-resolved fluorescence. The radiative and internal conversion rates were determined from the fluorescence quantum yield of the samples. Such spectroscopy parameters are fundamental for selecting photosensitizers used in photodynamic therapy, as well as for many other applications.


Assuntos
Indóis/química , Compostos Organometálicos/química , Processos Fotoquímicos , Isoindóis , Espectrometria de Fluorescência , Compostos de Zinco
17.
J Org Chem ; 81(11): 4720-7, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27128784

RESUMO

Photoluminescent materials, that are now ubiquitous in our everyday life, have particularly attracted the attention of the scientific community these past few years due to potential important applications such as in bioimaging, sensing, or optoelectronics. In this context, relatively few different families of molecules have been reported to exhibit fluorescence in the aggregated or solid-state through the excited-state intramolecular proton transfer (ESIPT) photochemical process. The preparation and subsequent determination of photochemical properties of an underexplored family of 1,5-benzodiazepin-2-one derivatives are reported. From these data and X-ray diffraction analysis study, it emerged that photoluminescence (in the range 520-655 nm) was mostly attributed to ESIPT. The photoluminescent potential of 1,5-benzodiazepin-2-ones, their facile access, and functionalization were demonstrated through the preparation of two fluorogenic probes for the selective detection of biothiols.

18.
Chemistry ; 20(29): 8909-13, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24939342

RESUMO

Highly stable and highly soluble push-pull heptamethine hemicyanines based on the tricyanofuran electron-accepting group can be prepared on a 15 g scale. The compounds display giant second-order nonlinear figure of merit, µß of up to 31,000×10(-48) esu, and lead to a poled material with a second-order nonlinear response, r33 of 90 pm V(-1) at 1.06 µm.

19.
Chem Commun (Camb) ; 50(56): 7466-8, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24874891

RESUMO

A one-step method to access to functionalized heteroleptic lanthanide double-decker complexes of phthalocyanine of A7B-type is reported. This optimized statistical method led to two hydroxylated model europium complexes, one of which was further converted into its mesylated and azido derivatives.

20.
Org Biomol Chem ; 12(22): 3641-8, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756609

RESUMO

A family of fluorescent push-pull pH-responsive probes based on 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran as a strong electron acceptor group is described. Small structural variations allow obtaining pK(a) ranging from 4.8 to 8.6, underlining the role of the substituent in modulating the acidic properties. Remarkable changes in the optical properties (in particular the fluorescence intensity ratios) were observed as a function of pH. The most interesting probes with pK(a) close to neutrality were used for ratiometric imaging of intracellular pH.


Assuntos
Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Técnicas de Sonda Molecular , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA