Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioelectricity ; 6(2): 136-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39119565

RESUMO

The 32nd Ion Channel Meetings were organized by the Ion Channels Association from September 17 to 20, 2023 in the Occitanie region (Sète). Researchers, post-docs and students from France, Europe and non-European countries came together to present and discuss their work on various themes covering the field of neuroscience, stem cells, hypoxia and pathophysiology cardiac. Through the plenary conference given by Professor Emilio Carbone and the 5 conferences organized by the scientific committee, attention was paid this year to autism, neuromotor and cardiac disorders and tumor aggressive processes. The scientific exchanges were enriched by two general conferences on the biometric analysis of publications related to ion channels and a retrospective presentation of proven cases of scientific fraud. These presentations are summarized in this meeting report.

2.
Am J Physiol Cell Physiol ; 327(3): C557-C570, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985989

RESUMO

The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.


Assuntos
Potenciais de Ação , Fatores de Troca do Nucleotídeo Guanina , Ventrículos do Coração , Miócitos Cardíacos , Proteína Quinase C , Transdução de Sinais , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Proteína Quinase C/metabolismo , Ratos , Potenciais de Ação/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Masculino , Ratos Wistar , Potássio/metabolismo , AMP Cíclico/metabolismo
3.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599061

RESUMO

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Assuntos
Conexina 43 , Miócitos de Músculo Liso , Fator de Crescimento Neural , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fosforilação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor trkA/metabolismo
4.
Arch Cardiovasc Dis ; 117(4): 283-296, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490844

RESUMO

Atrial cardiomyopathy is defined as any complex of structural, architectural, contractile or electrophysiological changes affecting atria, with the potential to produce clinically relevant manifestations. Most of our knowledge about the mechanistic aspects of atrial cardiomyopathy is derived from studies investigating animal models of atrial fibrillation and atrial tissue samples obtained from individuals who have a history of atrial fibrillation. Several noninvasive tools have been reported to characterize atrial cardiomyopathy in patients, which may be relevant for predicting the risk of incident atrial fibrillation and its related outcomes, such as stroke. Here, we provide an overview of the pathophysiological mechanisms involved in atrial cardiomyopathy, and discuss the complex interplay of these mechanisms, including aging, left atrial pressure overload, metabolic disorders and genetic factors. We discuss clinical tools currently available to characterize atrial cardiomyopathy, including electrocardiograms, cardiac imaging and serum biomarkers. Finally, we discuss the clinical impact of atrial cardiomyopathy, and its potential role for predicting atrial fibrillation, stroke, heart failure and dementia. Overall, this review aims to highlight the critical need for a clinically relevant definition of atrial cardiomyopathy to improve treatment strategies.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Cardiomiopatias , Acidente Vascular Cerebral , Animais , Humanos , Fibrilação Atrial/diagnóstico , Átrios do Coração , Cardiomiopatias/diagnóstico , Cardiomiopatias/terapia
6.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227351

RESUMO

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Assuntos
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Eletrocardiografia , Doença do Sistema de Condução Cardíaco , Morte Súbita Cardíaca , Conexinas
7.
Front Physiol ; 14: 1120336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909224

RESUMO

Introduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with increased mortality and morbidity. The Exchange Protein directly Activated by cAMP (EPAC), has been implicated in pro-arrhythmic signaling pathways in the atria, but the underlying mechanisms remain unknown. Methods: In this study, we investigated the involvement of EPAC1 and EPAC2 isoforms in the genesis of AF in wild type (WT) mice and knockout (KO) mice for EPAC1 or EPAC2. We also employed EPAC pharmacological modulators to selectively activate EPAC proteins (8-CPT-AM; 10 µM), or inhibit either EPAC1 (AM-001; 20 µM) or EPAC2 (ESI-05; 25 µM). Transesophageal stimulation was used to characterize the induction of AF in vivo in mice. Optical mapping experiments were performed on isolated mouse atria and cellular electrophysiology was examined by whole-cell patch-clamp technique. Results: In wild type mice, we found 8-CPT-AM slightly increased AF susceptibility and that this was blocked by the EPAC1 inhibitor AM-001 but not the EPAC2 inhibitor ESI-05. Consistent with this, in EPAC1 KO mice, occurrence of AF was observed in 3/12 (vs. 4/10 WT littermates) and 4/10 in EPAC2 KO (vs. 5/10 WT littermates). In wild type animals, optical mapping experiments revealed that 8-CPT-AM perfusion increased action potential duration even in the presence of AM-001 or ESI-05. Interestingly, 8-CPT-AM perfusion decreased conduction velocity, an effect blunted by AM-001 but not ESI-05. Patch-clamp experiments demonstrated action potential prolongation after 8-CPT-AM perfusion in both wild type and EPAC1 KO mice and this effect was partially prevented by AM-001 in WT. Conclusion: Together, these results indicate that EPAC1 and EPAC2 signaling pathways differentially alter atrial electrophysiology but only the EPAC1 isoform is involved in the genesis of AF. Selective blockade of EPAC1 with AM-001 prevents AF in mice.

8.
J Clin Med ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769395

RESUMO

BACKGROUND: Atrial fibrillation is the most sustained form of arrhythmia in the human population that leads to important electrophysiological and structural cardiac remodeling as it progresses into a chronic form. Calcium is an established key player of cellular electrophysiology in the heart, yet to date, there is no information that maps calcium signaling across the left atrium. OBJECTIVE: The aim of this study is to determine whether calcium signaling is homogenous throughout the different regions of the left atrium. This work tests the hypothesis that differences across the healthy left atrium contribute to a unique, region-dependent calcium cycling and participates in the pro-arrhythmic activity during atrial fibrillation. METHODS: An animal model relevant to human cardiac function (the sheep) was used to characterize both the electrical activity and the calcium signaling of three distinct left atrium regions (appendage, free wall and pulmonary veins) in control conditions and after acetylcholine perfusion (5 µM) to induce acute atrial fibrillation. High-resolution dual calcium-voltage optical mapping on the left atria of sheep was performed to explore the spatiotemporal dynamics of calcium signaling in relation to electrophysiological properties. RESULTS: Action potential duration (at 80% repolarization) was not significantly different in the three regions of interest for the three pacing sites. In contrast, the time to 50% calcium transient decay was significantly different depending on the region paced and recorded. Acetylcholine perfusion and burst pacing-induced atrial fibrillation when pulmonary veins and appendage regions were paced but not when the free wall region was. Dantrolene (a ryanodine receptor blocker) did not reduce atrial fibrillation susceptibility. CONCLUSION: These data provide the first evidence of heterogenous calcium signaling across the healthy left atrium. Such basal regional differences may be exacerbated during the progression of atrial fibrillation and thus play a crucial role in focal arrhythmia initiation without ryanodine receptor gating modification.

9.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768669

RESUMO

Cardiac excitation-contraction coupling can be different between regions of the heart. Little is known at the atria level, specifically in different regions of the left atrium. This is important given the role of cardiac myocytes from the pulmonary vein sleeves, which are responsible for ectopic activity during atrial fibrillation. In this study, we present a new method to isolate atrial cardiac myocytes from four different regions of the left atrium of a large animal model, sheep, highly relevant to humans. Using collagenase/protease we obtained calcium-tolerant atrial cardiac myocytes from the epicardium, endocardium, free wall and pulmonary vein regions. Calcium transients were slower (time to peak and time to decay) in free wall and pulmonary vein myocytes compared to the epicardium and endocardium. This is associated with lower t-tubule density. Overall, these results suggest regional differences in calcium transient and t-tubule density across left atria, which may play a major role in the genesis of atrial fibrillation.


Assuntos
Fibrilação Atrial , Humanos , Animais , Ovinos , Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta/metabolismo , Modelos Animais de Doenças
11.
Front Physiol ; 13: 952043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874541

RESUMO

MRI is widely used in cardiology to characterize the structure and function of the heart. Currently, gadolinium-based contrast agents are widely used to improve sensitivity and specificity of diagnostic images. Recently, Manganese, a calcium analogue, has emerged as a complementary contrast agent with the potential to reveal remaining viable cells within altered tissue. Imaging applications may be limited by substantial toxicity of manganese. Indeed, cardiac safety of manganese is not yet comprehensively assessed. In this study we investigated the effect of MnCl2 (1-100 µM) on cardiac function. Hemodynamic function was determined ex vivo using an isolated working rat heart preparation. HL-1 cardiac myocytes were used to investigate cell viability (calcein AM) and calcium cycling (Cal-520 a.m.). Rat ventricular cardiomyocytes were dissociated by enzymatic digestion. Action potentials and calcium currents were recorded using the patch clamp technique. MRI experiments were performed at 1.5T on formalin-fixed rat hearts, previously perfused with MnCl2. MnCl2 perfusion from 1 up to 100 µM in isolated working hearts did not alter left ventricular hemodynamic parameters. Contractility and relaxation index were not altered up to 50 µM MnCl2. In HL-1 cardiac myocytes, incubation with increasing concentrations of MnCl2 did not impact cell viability. The amplitude of the calcium transients were significantly reduced at 50 and 100 µM MnCl2. In freshly isolated ventricular myocytes, action potential duration at 20, 50 and 90% of repolarization were not modified up to 10 µM of MnCl2. L-type calcium current amplitude was significantly decreased by 50 and 100 µM of MnCl2. MRI on heart perfused with 25 and 100 µM of MnCl2 showed a dose dependent decrease in the T1 relaxation time. In conclusion, our results show that low concentrations of MnCl2 (up to 25 µM) can be used as a contrast agent in MRI, without significant impact on cardiac hemodynamic or electrophysiology parameters.

13.
Front Physiol ; 13: 1095102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620226

RESUMO

The TREK-1 channel belongs to the TREK subfamily of two-pore domains channels that are activated by stretch and polyunsaturated fatty acids and inactivated by Protein Kinase A phosphorylation. The activation of this potassium channel must induce a hyperpolarization of the resting membrane potential and a shortening of the action potential duration in neurons and cardiac cells, two phenomena being beneficial for these tissues in pathological situations like ischemia-reperfusion. Surprisingly, the physiological role of TREK-1 in cardiac function has never been thoroughly investigated, very likely because of the lack of a specific inhibitor. However, possible roles have been unraveled in pathological situations such as atrial fibrillation worsened by heart failure, right ventricular outflow tract tachycardia or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1 channel within the heart reinforces the idea that this stretch-activated potassium channel might play a role in cardiac areas where the mechanical constraints are important and need a particular protection afforded by TREK-1. Consequently, the main purpose of this mini review is to discuss the possible role played by TREK -1 in physiological and pathophysiological conditions and its potential role in mechano-electrical feedback. Improved understanding of the role of TREK-1 in the heart may help the development of promising treatments for challenging cardiac diseases.

14.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33475719

RESUMO

Air pollution is an environmental hazard that is associated with cardiovascular dysfunction. Phenanthrene is a three-ringed polyaromatic hydrocarbon that is a significant component of air pollution and crude oil and has been shown to cause cardiac dysfunction in marine fishes. We investigated the cardiotoxic effects of phenanthrene in zebrafish (Danio rerio), an animal model relevant to human cardiac electrophysiology, using whole-cell patch-clamp of ventricular cardiomyocytes. First, we show that phenanthrene significantly shortened action potential duration without altering resting membrane potential or upstroke velocity (dV/dt). L-type Ca2+ current was significantly decreased by phenanthrene, consistent with the decrease in action potential duration. Phenanthrene blocked the hERG orthologue (zfERG) native current, IKr, and accelerated IKr deactivation kinetics in a dose-dependent manner. Furthermore, we show that phenanthrene significantly inhibits the protective IKr current envelope, elicited by a paired ventricular AP-like command waveform protocol. Phenanthrene had no effect on other IK. These findings demonstrate that exposure to phenanthrene shortens action potential duration, which may reduce refractoriness and increase susceptibility to certain arrhythmia triggers, such as premature ventricular contractions. These data also reveal a previously unrecognized mechanism of polyaromatic hydrocarbon cardiotoxicity on zfERG by accelerating deactivation and decreasing IKr protective current.


Assuntos
Miócitos Cardíacos , Fenantrenos , Potenciais de Ação , Animais , Ventrículos do Coração , Humanos , Fenantrenos/toxicidade , Peixe-Zebra
16.
Nat Rev Cardiol ; 16(6): 344-360, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30664669

RESUMO

Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.


Assuntos
Fibroblastos/metabolismo , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Nó Sinoatrial/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação , Animais , Fármacos Cardiovasculares/uso terapêutico , Fibroblastos/efeitos dos fármacos , Cardiopatias/tratamento farmacológico , Cardiopatias/fisiopatologia , Humanos , Terapia de Alvo Molecular , Miócitos Cardíacos/efeitos dos fármacos , Ramos Subendocárdicos/efeitos dos fármacos , Ramos Subendocárdicos/fisiopatologia , Transdução de Sinais , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiopatologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos
17.
Circ Arrhythm Electrophysiol ; 11(8): e005913, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354313

RESUMO

Background Papillary muscles are an important source of ventricular tachycardia (VT). Yet little is known about the role of the right ventricular (RV) endocavity structure, the moderator band (MB). The aim of this study was to determine the characteristics of the MB that may predispose to arrhythmia substrates. Methods Ventricular wedge preparations with intact MBs were studied from humans (n=2) and sheep (n=15; 40-50 kg). RV endocardium was optically mapped, and electrical recordings were measured along the MB and septum. S1S2 pacing of the RV free wall, MB, or combined S1-RV S2-MB sites were assessed. Human (n=2) and sheep (n=4) MB tissue constituents were assessed histologically. Results The MB structure was remarkably organized as 2 excitable, yet uncoupled compartments of myocardium and Purkinje. In humans, action potential duration heterogeneity between MB and RV myocardium was found (324.6±12.0 versus 364.0±8.4 ms; P<0.0001). S1S2-MB pacing induced unidirectional propagation via MB myocardium, permitting sustained macroreentrant VT. In sheep, the incidence of VT for RV, MB, and S1-RV S2-MB pacing was 1.3%, 5.1%, and 10.3%. Severing the MB led to VT termination, confirming a primary arrhythmic role. Inducible preparations had shorter action potential duration in the MB than RV (259.3±45.2 versus 300.7±38.5 ms; P<0.05), whereas noninducible preparations showed no difference (312.0±30.3 versus 310.0±24.6 ms, respectively). Conclusions The MB presents anatomic and electrical compartmentalization between myocardium and Purkinje fibers, providing a substrate for macroreentry. The vulnerability to sustain VT via this mechanism is dependent on MB structure and action potential duration gradients between the RV free wall and MB.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Músculos Papilares/fisiopatologia , Taquicardia Ventricular/etiologia , Animais , Estimulação Cardíaca Artificial , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Humanos , Técnicas In Vitro , Modelos Cardiovasculares , Miocárdio/patologia , Músculos Papilares/patologia , Ramos Subendocárdicos/fisiopatologia , Carneiro Doméstico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
18.
Sci Rep ; 7: 41476, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139666

RESUMO

The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.


Assuntos
Miócitos Cardíacos/patologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cálcio/metabolismo , Peixes , Ventrículos do Coração/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenantrenos/toxicidade , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1493-501, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25377479

RESUMO

Cardiomyocyte contraction depends on rapid changes in intracellular Ca(2+). In mammals, Ca(2+) influx as L-type Ca(2+) current (ICa) triggers the release of Ca(2+) from sarcoplasmic reticulum (SR) and Ca(2+)-induced Ca(2+) release (CICR) is critical for excitation-contraction coupling. In fish, the relative contribution of external and internal Ca(2+) is unclear. Here, we characterized the role of ICa to trigger SR Ca(2+) release in rainbow trout ventricular myocytes using ICa regulation by Ca(2+) as an index of CICR. ICa was recorded with a slow (EGTA) or fast (BAPTA) Ca(2+) chelator in control and isoproterenol conditions. In the absence of ß-adrenergic stimulation, the rate of ICa inactivation was not significantly different in EGTA and BAPTA (27.1 ± 1.8 vs. 30.3 ± 2.4 ms), whereas with isoproterenol (1 µM), inactivation was significantly faster with EGTA (11.6 ± 1.7 vs. 27.3 ± 1.6 ms). When barium was the charge carrier, inactivation was significantly slower in both conditions (61.9 ± 6.1 vs. 68.0 ± 8.7 ms, control, isoproterenol). Quantification revealed that without isoproterenol, only 39% of ICa inactivation was due to Ca(2+), while with isoproterenol, inactivation was Ca(2+)-dependent (∼65%) and highly reliant on SR Ca(2+) (∼46%). Thus, SR Ca(2+) is not released in basal conditions, and ICa is the main trigger of contraction, whereas during a stress response, SR Ca(2+) is an important source of cytosolic Ca(2+). This was not attributed to differences in SR Ca(2+) load because caffeine-induced transients were not different in both conditions. Therefore, Ca(2+) stored in SR of trout cardiomyocytes may act as a safety mechanism, allowing greater contraction when higher contractility is required, such as stress or exercise.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Oncorhynchus mykiss/metabolismo , Retículo Sarcoplasmático/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Acoplamento Excitação-Contração , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Fatores de Tempo
20.
Science ; 343(6172): 772-6, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24531969

RESUMO

Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.


Assuntos
Arritmias Cardíacas/veterinária , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Poluição por Petróleo , Petróleo/toxicidade , Atum/fisiologia , Animais , Arritmias Cardíacas/induzido quimicamente , Cálcio/metabolismo , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Função Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA