Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Clin Pathol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749660

RESUMO

AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a diagnosis of exclusion that can pose a challenge to the pathologist despite thorough clinical workup. Although several immunohistochemical markers have been proposed for iCCA, none of them reached clinical practice. We here assessed the combined usage of two promising diagnostic approaches, albumin in situ hybridisation (Alb-ISH) and C reactive protein (CRP) immunohistochemistry, for distinguishing iCCA from other adenocarcinoma primaries. METHODS: We conducted Alb-ISH and CRP immunohistochemistry in a large European iCCA cohort (n=153) and compared the results with a spectrum of other glandular adenocarcinomas of different origin (n=885). In addition, we correlated expression patterns with clinicopathological information and mutation data. RESULTS: Alb-ISH was highly specific for iCCA (specificity 98.8%) with almost complete negativity in perihilar CCA and only rare positives among other adenocarcinomas (sensitivity 69.5%). CRP identified the vast majority of iCCA cases (sensitivity 84.1%) at a lower specificity of 86.4%. Strikingly, the combination of CRP and Alb-ISH boosted the diagnostic sensitivity to 88.0% while retaining a considerable specificity of 86.1%. Alb-ISH significantly correlated with CRP expression, specific tumour morphologies and small or large duct iCCA subtypes. Neither Alb-ISH nor CRP was associated with iCCA patient survival. 16 of 17 recurrent mutations in either IDH1, IDH2 and FGFR2 affected Alb-ISH positive cases, while the only KRAS mutation corresponded to an Alb-ISH negative case. CONCLUSIONS: In conclusion, we propose a sequential diagnostic approach for iCCA, integrating CRP immunohistochemistry and Alb-ISH. This may improve the accuracy of CCA classification and pave the way towards a molecular-guided CCA classification.

2.
Gastroenterology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636680

RESUMO

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

3.
Cancer Res ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471084

RESUMO

Dysregulation of cholesterol homeostasis is implicated in the development and progression of hepatocellular carcinoma (HCC) that is characterized by intrahepatic and early extrahepatic metastasis. A better understanding of the underlying mechanisms regulating cholesterol metabolism in HCC could help identify strategies to circumvent the aggressive phenotype. Here, we found that high expression of intracellular SPARC was significantly associated with elevated cholesterol levels and an enhanced invasive phenotype in HCC. SPARC potentiated cholesterol accumulation in HCC cells during tumor progression by stabilizing the ApoE protein. Mechanistically, SPARC competitively bound to ApoE, impairing its interaction with the E3 ligase tripartite motif containing 21 (TRIM21) and preventing its ubiquitylation and subsequent degradation. ApoE accumulation led to cholesterol enrichment in HCC cells, stimulating PI3K-AKT signaling and inducing epithelial-mesenchymal transition (EMT). Importantly, sorafenib-resistant HCC cells were characterized by increased expression of intracellular SPARC, elevated cholesterol levels, and enhanced invasive capacity. Inhibiting SPARC expression or reducing cholesterol levels enhanced the sensitivity of HCC cells to sorafenib treatment. Together, these findings unveil interplay between SPARC and cholesterol homeostasis. Targeting SPARC-triggered cholesterol-dependent oncogenic signaling is a potential therapeutic strategy for advanced HCC.

4.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436764

RESUMO

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Assuntos
Comunicação Celular , Fígado , Proteínas de Sinalização YAP , Animais , Camundongos , Comunicação Celular/genética , Células Endoteliais , Hepatócitos , Ligantes , Fígado/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
5.
Cancer Lett ; 584: 216637, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242197

RESUMO

The transcriptional co-activators of the Hippo pathway, YAP and TAZ, are regulated by mechanotransduction, which depends on dynamic actin cytoskeleton remodeling. Here, we identified SEPTIN10 as a novel cytoskeletal protein, which is transcriptionally regulated by YAP/TAZ and whose overexpression correlates with poor survival and vascular invasion in hepatocellular carcinoma (HCC) patients. Functional characterization demonstrated that SEPTIN10 promotes YAP/TAZ-dependent cell viability, migration and invasion of liver cancer cells. Mechanistically, SEPTIN10 interacts with actin and microtubule filaments supporting actin stress fiber formation and intracellular tension through binding to CAPZA2 while concurrently inhibiting microtubule polymerization through the blockage of MAP4 function. This functional antagonism is important for cytoskeleton-dependent feedback activation of YAP/TAZ, as microtubule depolymerization induces actin stress fiber formation and subsequently YAP/TAZ activity. Importantly, the crosstalk between microfilaments and microtubules is mediated by SEPTIN10 as its loss abrogates actin stress fiber formation after microtubule disruption. Together, the YAP/TAZ target gene SEPTIN10 controls the dynamic interplay between actin and microtubule filaments, which feeds back on Hippo pathway activity in HCC cells and thus acts as molecular switch with impact on oncogenic signaling and cancer cell biology.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mecanotransdução Celular , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
6.
Hepatology ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916976

RESUMO

BACKGROUND AND AIMS: HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS: Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS: This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTßR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.

7.
Cell Commun Signal ; 21(1): 162, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381005

RESUMO

BACKGROUND: Adherens junctions (AJs) facilitate cell-cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α-catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α-catenin contributes to liver cancer formation. METHODS: TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α-catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α-catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation. RESULTS: α-catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α-catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α-catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α-catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α-catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α-catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α-catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α-catenin. CONCLUSION: Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α-catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.


Cell­cell contact in epithelial cells is important for cell polarity, cellular compartmentalisation, as well as tissue architecture during development, homeostasis, and regeneration of adult tissues in metazoans. In this context, adherens junctions (AJs) mechanically sense cell contact information with direct impact on cytoskeletal remodelling, the regulation of signalling pathways, and eventually cell biology. Indeed, the loss of cell­cell contact and cellular polarity are key features in human carcinogenesis and important pathological parameters for the identification of many epithelial tumors.We demonstrate in this study, that overexpression of the AJ constituent α­catenin is frequently observed in human hepatocellular carcinoma (HCC). α­catenin supports HCC cell proliferation and migration. Together with the oncogene AKT, α­catenin moderately facilitates tumor initiation in mouse livers. Using mass spectrometry, we identified several new α­catenin interaction partners in the cytosol of liver cancer cells, including the cytokinesis regulator centrosomal protein 55 (CEP55). CEP55 mediates pro-migratory effects and its overexpression in HCC cells is controlled by two molecular mechanisms: α­catenin-dependent protein stabilization and transcriptional induction by the TEA domain transcription factors (TEADs)/forkhead box M1 (FoxM1)/yes-associated protein (YAP) complex.In summary, we here describe a new mechanism how changes in cell­cell contact support liver cancer formation and progression. This study demonstrates that dysregulation of the AJ component α­catenin contributes to liver carcinogenesis via distinct molecular mechanisms. Video Abstract.


Assuntos
Adenocarcinoma , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Neoplasias do Colo , Neoplasias Hepáticas , Animais , Humanos , Camundongos , alfa Catenina , Linhagem Celular , Movimento Celular , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-akt
8.
Elife ; 112022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255405

RESUMO

The Hippo signaling pathway controls cell proliferation and tissue regeneration via its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). The canonical pathway topology is characterized by sequential phosphorylation of kinases in the cytoplasm that defines the subcellular localization of YAP and TAZ. However, the molecular mechanisms controlling the nuclear/cytoplasmic shuttling dynamics of both factors under physiological and tissue-damaging conditions are poorly understood. By implementing experimental in vitro data, partial differential equation modeling, as well as automated image analysis, we demonstrate that nuclear phosphorylation contributes to differences between YAP and TAZ localization in the nucleus and cytoplasm. Treatment of hepatocyte-derived cells with hepatotoxic acetaminophen (APAP) induces a biphasic protein phosphorylation eventually leading to nuclear protein enrichment of YAP but not TAZ. APAP-dependent regulation of nuclear/cytoplasmic YAP shuttling is not an unspecific cellular response but relies on the sequential induction of reactive oxygen species (ROS), RAC-alpha serine/threonine-protein kinase (AKT, synonym: protein kinase B), as well as elevated nuclear interaction between YAP and AKT. Mouse experiments confirm this sequence of events illustrated by the expression of ROS-, AKT-, and YAP-specific gene signatures upon APAP administration. In summary, our data illustrate the importance of nuclear processes in the regulation of Hippo pathway activity. YAP and TAZ exhibit different shuttling dynamics, which explains distinct cellular responses of both factors under physiological and tissue-damaging conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Acetaminofen/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Proteínas Nucleares/metabolismo , Treonina/metabolismo , Serina/metabolismo
9.
Cells ; 11(16)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010583

RESUMO

Cell-cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction's transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial-mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and ß-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Junções Aderentes/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/patologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Multimerização Proteica
10.
Cells ; 11(9)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563834

RESUMO

Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression. Database and gene expression data of human HCC were integrated to develop a potential LINC00152-driven ceRNA in silico. RNA immunoprecipitation and luciferase assay were used to identify miRNA binding to LINC00152 in human HCC cells. Functionally active players in the ceRNA network were analyzed using gene editing, siRNA or miRNA mimic transfection, and expression vectors in vitro. RNA expression in human HCC in vivo was validated by RNA in situ hybridization. Let-7c-5p, miR-23a-3p, miR-125a-5p, miR-125b-5p, miR-143a-3p, miR-193-3p, and miR-195-5p were detected as new components of the potential LINC00152 ceRNA network in human HCC. LINC00152 was confirmed to sponge miR143a-3p in human HCC cell lines, thereby limiting its binding to their respective target genes, like KLC2. KLC2 was identified as a central mediator promoting pro-tumorigenic effects of LINC00152 overexpression in HCC cells. Furthermore, co-expression of LINC00152 and KLC2 was observed in human HCC cohorts and high KLC2 expression was associated with shorter patient survival. Functional assays demonstrated that KLC2 promoted cell proliferation, clonogenicity and migration in vitro. The LINC00152-miR-143a-3p-KLC2 axis may represent a therapeutic target in human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267462

RESUMO

Liver cancers, which are mostly hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are very aggressive tumors with poor prognosis. Therapeutic options with curative intent are largely limited to surgery and available systemic therapies show limited benefit. Signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) are key transcription factors activated by pro-inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6 (IL-6). In this study, we combined in vitro cell culture experiments and immunohistochemical analyses of human HCC (N = 124) and CCA (N = 138) specimens. We observed that in the absence of STAT3, IL-6 induced the activation of STAT1 and its target genes suggesting that IL-6 derived from the tumor microenvironment may activate both STAT1 and STAT3 target genes in HCC tumor cells. In addition, STAT1 and STAT3 were highly activated in a subset of HCC, which exhibited a high degree of infiltrating CD8- and FOXP3-positive immune cells and PD-L1 expression. Our results demonstrate that STAT1 and STAT3 are expressed and activated in HCC and tumor infiltrating immune cells. In addition, HCC cases with high STAT1 and STAT3 expression also exhibited a high degree of immune cell infiltration, suggesting increased immunological tolerance.

12.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053620

RESUMO

The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53-/- background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53's ability to suppress liver cancer formation.

13.
Hepatol Commun ; 6(5): 1140-1156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34817932

RESUMO

Induction of neoangiogenesis is a hallmark feature during disease progression of hepatocellular carcinoma (HCC). Antiangiogenetic compounds represent a mainstay of therapeutic approaches; however, development of chemoresistance is observed in the majority of patients. Recent findings suggest that tumor-initiating cells (TICs) may play a key role in acquisition of resistance, but the exact relevance for HCC in this process remains to be defined. Primary and established hepatoma cell lines were exposed to long-term sorafenib treatment to model acquisition of resistance. Treatment effects on TICs were estimated by sphere-forming capacity in vitro, tumorigenicity in vivo, and flow cytometry. Adaptive molecular changes were assessed by whole transcriptome analyses. Compensatory mechanisms of resistance were identified and directly evaluated. Sustained antiproliferative effect following sorafenib treatment was observed in three of six HCC cell lines and was followed by rapid regrowth, thereby mimicking responses observed in patients. Resistant cells showed induction in sphere forming in vitro and tumor-initiating capacity in vivo as well as increased number of side population and epithelial cell adhesion molecule-positive cells. Conversely, sensitive cell lines showed consistent reduction of TIC properties. Gene sets associated with resistance and poor prognosis, including Hippo/yes-associated protein (YAP), were identified. Western blot and immunohistochemistry confirmed increased levels of YAP. Combined treatment of sorafenib and specific YAP inhibitor consistently revealed synergistic antioncogenic effects in resistant cell lines. Conclusion: Resistance to antiangiogenic therapy might be driven by transient expansion of TICs and activation of compensatory pro-oncogenic signaling pathways, including YAP. Specific targeting of TICs might be an effective therapeutic strategy to overcome resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Proteínas de Sinalização YAP
14.
Gut ; 71(8): 1613-1628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34509979

RESUMO

OBJECTIVE: Large-scale genome sequencing efforts of human tumours identified epigenetic modifiers as one of the most frequently mutated gene class in human cancer. However, how these mutations drive tumour development and tumour progression are largely unknown. Here, we investigated the function of the histone demethylase KDM6A in gastrointestinal cancers, such as liver cancer and pancreatic cancer. DESIGN: Genetic alterations as well as expression analyses of KDM6A were performed in patients with liver cancer. Genetic mouse models of liver and pancreatic cancer coupled with Kdm6a-deficiency were investigated, transcriptomic and epigenetic profiling was performed, and in vivo and in vitro drug treatments were conducted. RESULTS: KDM6A expression was lost in 30% of patients with liver cancer. Kdm6a deletion significantly accelerated tumour development in murine liver and pancreatic cancer models. Kdm6a-deficient tumours showed hyperactivation of mTORC1 signalling, whereas endogenous Kdm6a re-expression by inducible RNA-interference in established Kdm6a-deficient tumours diminished mTORC1 activity resulting in attenuated tumour progression. Genome-wide transcriptional and epigenetic profiling revealed direct binding of Kdm6a to crucial negative regulators of mTORC1, such as Deptor, and subsequent transcriptional activation by epigenetic remodelling. Moreover, in vitro and in vivo genetic epistasis experiments illustrated a crucial function of Deptor and mTORC1 in Kdm6a-dependent tumour suppression. Importantly, KDM6A expression in human tumours correlates with mTORC1 activity and KDM6A-deficient tumours exhibit increased sensitivity to mTORC1 inhibition. CONCLUSION: KDM6A is an important tumour suppressor in gastrointestinal cancers and acts as an epigenetic toggle for mTORC1 signalling. Patients with KDM6A-deficient tumours could benefit of targeted therapy focusing on mTORC1 inhibition.


Assuntos
Histona Desmetilases/metabolismo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Epigênese Genética , Histona Desmetilases/genética , Histonas/genética , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
15.
BMC Cancer ; 21(1): 1079, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615513

RESUMO

BACKGROUND: Activation of the oncogene yes-associated protein (YAP) is frequently detected in intrahepatic cholangiocarcinoma (iCCA); however, the expression pattern and the functional impact of its paralogue WW domain-containing transcription regulator 1 (WWTR1; synonym: TAZ) are not well described in different CCA subtypes. METHODS: Immunohistochemical analysis of YAP and TAZ in iCCA and extrahepatic CCA (eCCA) cohorts was performed. YAP/TAZ shuttling and their functional impact on CCA cell lines were investigated. Target genes expression after combined YAP/TAZ inhibition was analyzed. RESULTS: Immunohistochemical analysis of iCCA and eCCA revealed YAP or TAZ positivity in up to 49.2%; however, oncogene co-expression was less frequent (up to 23%). In contrast, both proteins were jointly detectable in most CCA cell lines and showed nuclear/cytoplasmic shuttling in a cell density-dependent manner. Next to the pro-proliferative function of YAP/TAZ, both transcriptional co-activators cooperated in the regulation of a gene signature that indicated the presence of chromosomal instability (CIN). A correlation between YAP and the CIN marker phospho-H2A histone family member X (pH2AX) was particularly observed in tissues from iCCA and distal CCA (dCCA). The presence of the CIN genes in about 25% of iCCA was statistically associated with worse prognosis. CONCLUSIONS: YAP and TAZ activation is not uncoupled from cell density in CCA cells and both factors cooperatively contribute to proliferation and expression of CIN-associated genes. The corresponding group of CCA patients is characterized by CIN and may benefit from YAP/TAZ-directed therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Instabilidade Cromossômica/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Ductos Biliares Extra-Hepáticos , Ductos Biliares Intra-Hepáticos , Contagem de Células , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Prognóstico , Análise Serial de Tecidos , Fatores de Transcrição/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
16.
Liver Int ; 41(12): 3011-3023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34459091

RESUMO

BACKGROUND & AIM: The development of hepatocellular carcinoma (HCC) is associated with the formation of communication networks leading to the recruitment of disease-modifying macrophages. However, how oncogenes in tumour cells control paracrine communication is not fully understood. METHODS: Transgenic mice with liver-specific expression of the constitutively active yes-associated protein (YAPS127A ) or an orthotopic implantation model served as tumour models. FACS-sorted F4/80+ /CD11bdim /CD146- /retinoid- macrophages from healthy and tumour-bearing livers were used for transcriptomic profiling. Expression data of 242 human HCCs and a tissue microarray consisting of 91 HCCs and seven liver tissues were analyzed. RESULTS: Screening of primary tumour cells expressing YAPS127A identified CC chemokine ligand 2 (Ccl2) as a macrophage chemoattractant, whose expression was regulated in a YAP/TEA domain family member 4 (TEAD4)-dependent manner. Ccl2 expression was associated with a loss of Kupffer cells (KCs) and an increase in immature macrophages (Mɸimm ) in hepatocarcinogenesis. Recruited Mɸimm were characterized by a lack of functional polarization (M0 signature) and high expression of the Ccl2 receptors C-C motif chemokine receptor 2 (Ccr2), C-X3-C motif chemokine receptor 1 (Cx3cr1) and pro-angiogenic platelet-derived growth factors (Pdgfa/Pdgfb). Mɸimm formed cellular clusters in the perivascular space, which correlated with vascular morphometric changes indicative for angiogenesis. In human HCCs, the M0 signature served as an identifier for poor clinical outcome and CCL2 correlated with YAP expression and vascular network formation. CONCLUSIONS: In conclusion, YAP/TEAD4-regulated Ccl2 associates with perivascular recruitment of unpolarized Mɸimm and may contribute to a proangiogenic microenvironment in liver cancer.


Assuntos
Carcinoma Hepatocelular , Quimiocina CCL2 , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Quimiocina CCL2/metabolismo , Humanos , Células de Kupffer/metabolismo , Ligantes , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Camundongos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Fatores de Transcrição , Microambiente Tumoral , Remodelação Vascular , Proteínas de Sinalização YAP
17.
Cancer Res ; 80(24): 5502-5514, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33087321

RESUMO

The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Comunicação Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Sinalização YAP
18.
Cell Commun Signal ; 18(1): 166, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097058

RESUMO

BACKGROUND: Overexpression and nuclear enrichment of the oncogene yes-associated protein (YAP) cause tumor initiation and support tumor progression in human hepatocellular carcinoma (HCC) via cell autonomous mechanisms. However, how YAP expression in tumor cells affects intercellular communication within the tumor microenvironment is not well understood. METHODS: To investigate how tumor cell-derived YAP is changing the paracrine communication network between tumor cells and non-neoplastic cells in hepatocarcinogenesis, the expression and secretion of cytokines, growth factors and chemokines were analyzed in transgenic mice with liver-specific and inducible expression of constitutively active YAP (YAPS127A). Transcriptomic and proteomic analyses were performed using primary isolated hepatocytes and blood plasma. In vitro, RNAinterference (RNAi), expression profiling, functional analyses and chromatin immunoprecipitation (ChIP) analyses of YAP and the transcription factor TEA domain transcription factor 4 (TEAD4) were performed using immortalized cell lines. Findings were confirmed in cohorts of HCC patients at the transcript and protein levels. RESULTS: YAP overexpression induced the expression and secretion of many paracrine-acting factors with potential impact on tumorous or non-neoplastic cells (e.g. plasminogen activator inhibitor-1 (PAI-1), C-X-C motif chemokine ligand 13 (CXCL13), CXCL16). Expression analyses of human HCC patients showed an overexpression of PAI-1 in human HCC tissues and a correlation with poor overall survival as well as early cancer recurrence. PAI-1 statistically correlated with genes typically induced by YAP, such as connective tissue growth factor (CTGF) and cysteine rich angiogenic inducer 61 (CYR61) or YAP-dependent gene signatures (CIN4/25). In vitro, YAP inhibition diminished the expression and secretion of PAI-1 in murine and human liver cancer cell lines. PAI-1 affected the expression of genes involved in cellular senescence and oncogene-induced senescence was confirmed in YAPS127A transgenic mice. Silencing of TEAD4 as well as treatment with the YAP/TEAD interfering substance Verteporfin reduced PAI-1 expression. ChIP analyses confirmed the binding of YAP and TEAD4 to the gene promoter of PAI-1 (SERPINE1). CONCLUSIONS: These results demonstrate that the oncogene YAP changes the secretome response of hepatocytes and hepatocyte-derived tumor cells. In this context, the secreted protein PAI-1 is transcriptionally regulated by YAP in hepatocarcinogenesis. Perturbation of these YAP-dependent communication hubs including PAI-1 may represent a promising pharmacological approach in tumors with YAP overexpression. Video abstract.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteoma/metabolismo , Transcrição Gênica , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Senescência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Transgênicos , Proteínas Musculares/metabolismo , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/genética , Prognóstico , Regiões Promotoras Genéticas/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
19.
J Hepatol ; 72(5): 960-975, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31954207

RESUMO

BACKGROUND & AIMS: Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkßΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/ß signaling-(IfnarΔHep), or interferon-α/ß signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkßΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKß, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkßΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/ß-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/ß signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY: Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.


Assuntos
Hepacivirus/genética , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Subunidade p50 de NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição RelA/metabolismo , Replicação Viral/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Genótipo , Hepatite C Crônica/virologia , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Coriomeningite Linfocítica/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Adulto Jovem
20.
Cancer Lett ; 473: 164-175, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904487

RESUMO

The Hippo pathway effectors yes-associated protein (YAP) and WW domain containing transcription regulator 1 (TAZ/WWTR1) support tumor initiation and progression in various cancer entities including hepatocellular carcinoma (HCC). However, to which extent YAP and TAZ contribute to liver tumorigenesis via common and exclusive molecular mechanisms is poorly understood. RNAinterference (RNAi) experiments illustrate that YAP and TAZ individually support HCC cell viability and migration, while for invasion additive effects were observed. Comprehensive expression profiling revealed partly overlapping YAP/TAZ target genes as well as exclusively regulated genes. Integrin-αV (ITGAV) is a novel TAZ-specific target gene, whose overexpression in human HCC patients correlates with poor clinical outcome, TAZ expression in HCCs, and the abundance of YAP/TAZ target genes. Functionally, ITGAV contributes to actin stress fiber assembly, tumor cell migration and invasion. Perturbation of ITGAV diminishes actin fiber formation and nuclear YAP/TAZ protein levels. We describe a novel Hippo downstream mechanism in HCC cells, which is regulated by TAZ and ITGAV and that feedbacks on YAP/TAZ activity. This mechanism may represent a therapeutic target structure since it contributes to signal amplification of oncogenic YAP/TAZ in hepatocarcinogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/genética , Retroalimentação Fisiológica , Integrina alfaV/genética , Neoplasias Hepáticas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Estudos de Coortes , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Integrina alfaV/metabolismo , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Análise Serial de Tecidos , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA