Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 12(10): e0185220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981529

RESUMO

BACKGROUND: The availability of the bovine genome sequence and SNP panels has improved various genomic analyses, from exploring genetic diversity to aiding genetic selection. However, few of the SNP on the bovine chips are polymorphic in buffalo, therefore a panel of single nucleotide DNA markers exclusive for buffalo was necessary for molecular genetic analyses and to develop genomic selection approaches for water buffalo. The creation of a 90K SNP panel for river buffalo and testing in a genome wide association study for milk production is described here. METHODS: The genomes of 73 buffaloes of 4 different breeds were sequenced and aligned against the bovine genome, which facilitated the identification of 22 million of sequence variants among the buffalo genomes. Based on frequencies of variants within and among buffalo breeds, and their distribution across the genome, inferred from the bovine genome sequence, 90,000 putative single nucleotide polymorphisms were selected to create an Axiom® Buffalo Genotyping Array 90K. RESULTS: This 90K "SNP-Chip" was tested in several river buffalo populations and found to have ∼70% high quality and polymorphic SNPs. Of the 90K SNPs about 24K were also found to be polymorphic in swamp buffalo. The SNP chip was used to investigate the structure of buffalo populations, and could distinguish buffalo from different farms. A Genome Wide Association Study identified genomic regions on 5 chromosomes putatively involved in milk production. CONCLUSION: The 90K buffalo SNP chip described here is suitable for the analysis of the genomes of river buffalo breeds, and could be used for genetic diversity studies and potentially as a starting point for genome-assisted selection programmes. This SNP Chip could also be used to analyse swamp buffalo, but many loci are not informative and creation of a revised SNP set specific for swamp buffalo would be advised.


Assuntos
Búfalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Estudo de Associação Genômica Ampla
3.
BMC Med Genomics ; 10(1): 17, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28315634

RESUMO

BACKGROUND: The importance of accurate and affordable mutation calling in fixed pathology samples is becoming increasingly important as we move into the era of personalised medicine. The Affymetrix OncoScan® Array platform is designed to produce actionable mutation calls in archival material. METHODS: We compared calls made using the OncoScan platform with calls made using a custom designed PCR panel followed by next-generation sequencing (NGS), in order to benchmark the sensitivity and specificity of the OncoScan calls in a large cohort of fixed tumour samples. 392 fixed, clinical samples were sequenced, encompassing 641 PCR regions, 403 putative positive calls and 1528 putative negative calls. RESULTS: A small number of mutations could not be validated, either due to large indels or pseudogenes impairing parts of the NGS pipeline. For the remainder, if calls were filtered according to simple quality metrics, both sensitivity and specificity for the OncoScan platform were over 98%. This applied even to samples with poorer sample quality and lower variant allele frequency (5-10%) than product claims indicated. CONCLUSIONS: This benchmarking study will be useful to users and potential users of this platform, who wish to compare technologies or interpret their own results.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Humanos
4.
Plant Biotechnol J ; 15(3): 390-401, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27627182

RESUMO

Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Variação Genética/genética , Genoma de Planta/genética , Genótipo
5.
Plant Biotechnol J ; 14(5): 1195-206, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26466852

RESUMO

In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.


Assuntos
Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Triticum/genética , Cruzamento , Pool Gênico , Marcadores Genéticos , Variação Genética , Genótipo , Técnicas de Genotipagem , Poliploidia
6.
BMC Med Genomics ; 8: 5, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25889064

RESUMO

BACKGROUND: Adoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations. METHODS: In this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laboratories. OncoScan® formalin fixed paraffin embedded assay data was then analysed for reproducibility of genome-wide copy number, loss of heterozygosity and somatic mutations. Where available, somatic mutation data was compared to data from orthogonal technologies (pyro/sanger sequencing). RESULTS: Cross site comparisons of genome-wide copy number and loss of heterozygosity profiles showed greater than 95% average agreement between sites. Somatic mutations pre-validated by orthogonal technologies showed greater than 90% agreement with OncoScan® somatic mutation calls and somatic mutation concordance between sites averaged 97%. CONCLUSIONS: Reproducibility of whole-genome copy number, loss of heterozygosity and somatic mutation data using the OncoScan® assay has been demonstrated with comparatively low DNA inputs from a range of highly degraded formalin fixed paraffin embedded samples. In addition, our data shows examples of clinically-relevant aberrations that demonstrate the potential utility of the OncoScan® assay as a robust clinical tool for guiding tumour therapy.


Assuntos
Técnicas de Laboratório Clínico/normas , Perfilação da Expressão Gênica/métodos , Genoma Humano , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fixação de Tecidos/métodos , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Perda de Heterozigosidade , Masculino , Mutação , Neoplasias/metabolismo , Inclusão em Parafina , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
7.
BMC Genomics ; 16: 283, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25881165

RESUMO

BACKGROUND: In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. RESULTS: Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. CONCLUSIONS: This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.


Assuntos
Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Biologia Computacional , Genoma , Cabras/genética , Internet , Especificidade da Espécie , Interface Usuário-Computador
8.
BMC Genomics ; 16: 155, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25886969

RESUMO

BACKGROUND: A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. RESULTS: About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. CONCLUSIONS: The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.


Assuntos
Fragaria/genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Poliploidia , Mapeamento Cromossômico , Hibridização Genética , Mutação INDEL , Análise de Sequência de DNA
9.
BMC Genomics ; 15: 90, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24524230

RESUMO

BACKGROUND: Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. RESULTS: SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. CONCLUSIONS: This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Alelos , Animais , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Frequência do Gene , Biblioteca Gênica , Ligação Genética , Genótipo , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Masculino
10.
BMC Genomics ; 15: 123, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24517501

RESUMO

BACKGROUND: Currently, six commercial whole-genome SNP chips are available for cattle genotyping, produced by two different genotyping platforms. Technical issues need to be addressed to combine data that originates from the different platforms, or different versions of the same array generated by the manufacturer. For example: i) genome coordinates for SNPs may refer to different genome assemblies; ii) reference genome sequences are updated over time changing the positions, or even removing sequences which contain SNPs; iii) not all commercial SNP ID's are searchable within public databases; iv) SNPs can be coded using different formats and referencing different strands (e.g. A/B or A/C/T/G alleles, referencing forward/reverse, top/bottom or plus/minus strand); v) Due to new information being discovered, higher density chips do not necessarily include all the SNPs present in the lower density chips; and, vi) SNP IDs may not be consistent across chips and platforms. Most researchers and breed associations manage SNP data in real-time and thus require tools to standardise data in a user-friendly manner. DESCRIPTION: Here we present SNPchiMp, a MySQL database linked to an open access web-based interface. Features of this interface include, but are not limited to, the following functions: 1) referencing the SNP mapping information to the latest genome assembly, 2) extraction of information contained in dbSNP for SNPs present in all commercially available bovine chips, and 3) identification of SNPs in common between two or more bovine chips (e.g. for SNP imputation from lower to higher density). In addition, SNPchiMp can retrieve this information on subsets of SNPs, accessing such data either via physical position on a supported assembly, or by a list of SNP IDs, rs or ss identifiers. CONCLUSIONS: This tool combines many different sources of information, that otherwise are time consuming to obtain and difficult to integrate. The SNPchiMp not only provides the information in a user-friendly format, but also enables researchers to perform a large number of operations with a few clicks of the mouse. This significantly reduces the time needed to execute the large number of operations required to manage SNP data.


Assuntos
Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Internet , Interface Usuário-Computador
11.
BMC Genomics ; 14: 59, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356797

RESUMO

BACKGROUND: High density (HD) SNP genotyping arrays are an important tool for genetic analyses of animals and plants. Although the chicken is one of the most important farm animals, no HD array is yet available for high resolution genetic analysis of this species. RESULTS: We report here the development of a 600 K Affymetrix® Axiom® HD genotyping array designed using SNPs segregating in a wide variety of chicken populations. In order to generate a large catalogue of segregating SNPs, we re-sequenced 243 chickens from 24 chicken lines derived from diverse sources (experimental, commercial broiler and layer lines) by pooling 10-15 samples within each line. About 139 million (M) putative SNPs were detected by mapping sequence reads to the new reference genome (Gallus_gallus_4.0) of which ~78 M appeared to be segregating in different lines. Using criteria such as high SNP-quality score, acceptable design scores predicting high conversion performance in the final array and uniformity of distribution across the genome, we selected ~1.8 M SNPs for validation through genotyping on an independent set of samples (n = 282). About 64% of the SNPs were polymorphic with high call rates (>98%), good cluster separation and stable Mendelian inheritance. Polymorphic SNPs were further analysed for their population characteristics and genomic effects. SNPs with extreme breach of Hardy-Weinberg equilibrium (P < 0.00001) were excluded from the panel. The final array, designed on the basis of these analyses, consists of 580,954 SNPs and includes 21,534 coding variants. SNPs were selected to achieve an essentially uniform distribution based on genetic map distance for both broiler and layer lines. Due to a lower extent of LD in broilers compared to layers, as reported in previous studies, the ratio of broiler and layer SNPs in the array was kept as 3:2. The final panel was shown to genotype a wide range of samples including broilers and layers with over 100 K to 450 K informative SNPs per line. A principal component analysis was used to demonstrate the ability of the array to detect the expected population structure which is an important pre-investigation step for many genome-wide analyses. CONCLUSIONS: This Affymetrix® Axiom® array is the first SNP genotyping array for chicken that has been made commercially available to the public as a product. This array is expected to find widespread usage both in research and commercial application such as in genomic selection, genome-wide association studies, selection signature analyses, fine mapping of QTLs and detection of copy number variants.


Assuntos
Galinhas/genética , Técnicas de Genotipagem/instrumentação , Polimorfismo de Nucleotídeo Único/genética , Animais , Artefatos , Biologia Computacional , Frequência do Gene , Masculino , Reprodutibilidade dos Testes , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA