Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37873317

RESUMO

In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.

2.
iScience ; 24(11): 103269, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849462

RESUMO

Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.

3.
Dev Cell ; 56(19): 2722-2740.e6, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610329

RESUMO

Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-ß1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.


Assuntos
Via de Sinalização Hippo/fisiologia , Cicatrização/fisiologia , Proteínas de Sinalização YAP/metabolismo , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Orelha/patologia , Camundongos , Murinae/fisiologia , Miofibroblastos/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA