Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nano Lett ; 21(5): 2010-2017, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617255

RESUMO

Complementary to bulk synthesis, here we propose a designer lattice with extremely high magnetic frustration and demonstrate the possible realization of a quantum spin liquid state from both experiments and theoretical calculations. In an ultrathin (111) CoCr2O4 slice composed of three triangular and one kagome cation planes, the absence of a spin ordering or freezing transition is demonstrated down to 0.03 K, in the presence of strong antiferromagnetic correlations in the energy scale of 30 K between Co and Cr sublattices, leading to the frustration factor of ∼1000. Persisting spin fluctuations are observed at low temperatures via low-energy muon spin relaxation. Our calculations further demonstrate the emergence of highly degenerate magnetic ground states at the 0 K limit, due to the competition among multiply altered exchange interactions. These results collectively indicate the realization of a proximate quantum spin liquid state on the synthetic lattice.

2.
Sci Rep ; 5: 14156, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373267

RESUMO

The spontaneous expulsion of applied magnetic field, the Meissner effect, is a defining feature of superconductors; in Type-II superconductors above the lower critical field, this screening takes the form of a lattice of magnetic flux vortices. Using implanted spin-1/2 positive muons, one can measure the vortex lattice field distribution through the spin precession and deduce key parameters of the superconducting ground state, and thereby fundamental properties of the superconducting pairing. Muon spin rotation/relaxation (µSR) experiments have indeed revealed much interesting physics in the underdoped cuprates, where superconductivity is closely related to, or coexistent with, disordered or fluctuating magnetic and charge excitations. Such complications should be absent in overdoped cuprates, which are believed to exhibit conventional Fermi liquid behaviour. These first transverse field (TF)-µ(+)SR experiments on heavily-overdoped single crystals reveal a superfluid density exhibiting a clear inflection point near 0.5Tc, with a striking doping-independent scaling. This reflects hitherto unrecognized physics intrinsic to d-wave vortices, evidently generic to the cuprates, and may offer fundamentally new insights into their still-mysterious superconductivity.


Assuntos
Modelos Teóricos
3.
J Phys Condens Matter ; 25(11): 115601, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23406624

RESUMO

Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)-electrons localized in nanoscale ferromagnetic 'droplets' by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu(2)V(2)O(7) in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu(2)V(2)O(7) exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores.

4.
J Phys Condens Matter ; 24(18): 185601, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22481069

RESUMO

We report muon spin rotation spectra in the narrow-gap semiconductors FeGa(3) and FeSb(2) consistent with a narrow band of small spin polarons (SPs). The characteristic sizes obtained for these SPs are R(FeGa(3)) ≈ 0.3-0.6 nm and R(FeSb (2)) ≈ 0.3 nm, respectively. Such SP states are expected to originate from the exchange correlations between localized and itinerant electrons. Our data suggest that SP bands are formed at low temperature, but are destroyed by thermal fluctuations above 10 K in FeGa(3) and above 7 K in FeSb(2). Formation of such SP band states can explain many of the low-temperature properties of these materials.

5.
J Chem Phys ; 135(18): 184310, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22088068

RESUMO

The neutral muonic helium atom (4)Heµ, in which one of the electrons of He is replaced by a negative muon, may be effectively regarded as the heaviest isotope of the hydrogen atom, with a mass of 4.115 amu. We report details of the first muon spin rotation (µSR) measurements of the chemical reaction rate constant of (4)Heµ with molecular hydrogen, (4)Heµ + H(2) → (4)HeµH + H, at temperatures of 295.5, 405, and 500 K, as well as a µSR measurement of the hyperfine coupling constant of muonic He at high pressures. The experimental rate constants, k(Heµ), are compared with the predictions of accurate quantum mechanical (QM) dynamics calculations carried out on a well converged Born-Huang (BH) potential energy surface, based on complete configuration interaction calculations and including a Born-Oppenheimer diagonal correction. At the two highest measured temperatures the agreement between the quantum theory and experiment is good to excellent, well within experimental uncertainties that include an estimate of possible systematic error, but at 295.5 K the quantum calculations for k(Heµ) are below the experimental value by 2.1 times the experimental uncertainty estimates. Possible reasons for this discrepancy are discussed. Variational transition state theory calculations with multidimensional tunneling have also been carried out for k(Heµ) on the BH surface, and they agree with the accurate QM rate constants to within 30% over a wider temperature range of 200-1000 K. Comparisons between theory and experiment are also presented for the rate constants for both the D + H(2) and Mu + H(2) reactions in a novel study of kinetic isotope effects for the H + H(2) reactions over a factor of 36.1 in isotopic mass of the atomic reactant.

6.
J Phys Condens Matter ; 23(16): 164207, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21471612

RESUMO

We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinskii-Moriya-type interactions alone and that anisotropic axial interaction is present.

7.
Science ; 331(6016): 448-50, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21273484

RESUMO

The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units ((4.1)H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of (4.1)H with (1)H(2) to produce (4.1)H(1)H + (1)H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of (0.11)H (where (0.11)H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range.

8.
Phys Rev Lett ; 105(7): 076402, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868063

RESUMO

Muon spin rotation spectroscopy reveals localized electron states in the geometrically frustrated metallic pyrochlore Cd2Re2O7 at temperatures from 2 to 300 K in transverse magnetic fields up to 7 T. Two distinctive types of localized states, with characteristic radii of about 0.5 and 0.15 nm, are detected at high and low temperature, respectively. These states may be spin polarons, formed due to strong exchange interaction between itinerant electrons and the magnetic 5d electrons of Re ions, which may determine the peculiar electronic and magnetic properties of Cd2Re2O7.

9.
J Phys Condens Matter ; 22(49): 495601, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406786

RESUMO

Muon spin rotation/relaxation spectroscopy has been employed to study electron localization into a bound magnetic polaron around the positive muon in the 3d magnetic spinel semiconductor CdCr2Se4 at temperatures up to 300 K (far above the ferromagnetic transition at Tc = 130 K) in magnetic fields up to 7 T. Electron localization into a magnetic polaron occurs due to its strong exchange interaction with the magnetic 3d electrons of local Cr(3 +) ions, which confines its wavefunction to within R≈0.3 nm, allowing significant overlap with both the nearest and the next nearest shells of Cr ions. Formation of such magnetic polarons may explain peculiar electronic and magnetic properties of magnetic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA