Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169146

RESUMO

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Assuntos
Proteínas de Plantas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Antocianinas/metabolismo , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas/genética , Plantas Geneticamente Modificadas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Fenótipo
2.
Front Plant Sci ; 11: 590846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469460

RESUMO

Runs of homozygosity (ROH) have been widely used to study population history and trait architecture in humans and livestock species, but their application in self-incompatible plants has not been reported. The distributions of ROH in 199 accessions representing Asian pears (45), European pears (109), and interspecific hybrids (45) were investigated using genotyping-by-sequencing in this study. Fruit phenotypes including fruit weight, firmness, Brix, titratable acidity, and flavor volatiles were measured for genotype-phenotype analyses. The average number of ROH and the average total genomic length of ROH were 6 and 11 Mb, respectively, in Asian accessions, and 13 and 30 Mb, respectively, in European accessions. Significant associations between genomic inbreeding coefficients (FROH) and phenotypes were observed for 23 out of 32 traits analyzed. An overlap between ROH islands and significant markers from genome-wide association analyses was observed. Previously published quantitative trait loci for fruit traits and disease resistances also overlapped with some of the ROH islands. A prominent ROH island at the bottom of linkage group 17 overlapped with a recombination-supressed genomic region harboring the self-incompatibility locus. The observed ROH patterns suggested that systematic breeding of European pears would have started earlier than of Asian pears. Our research suggest that FROH would serve as a novel tool for managing inbreeding in gene-banks of self-incompatible plant species. ROH mapping provides a complementary strategy to unravel the genetic architecture of complex traits, and to evaluate differential selection in outbred plants. This seminal work would provide foundation for the ROH research in self-incompatible plants.

3.
Sci Rep ; 9(1): 9072, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227781

RESUMO

Interspecific pear (Pyrus spp.) hybrid populations are often used to develop novel cultivars. Pear cultivar breeding is a lengthy process because of long juvenility and the subsequent time required for reliable fruit phenotyping. Molecular techniques such as genome-wide association (GWA) and genomic selection (GS) provide an opportunity to fast-forward the development of high-value cultivars. We evaluated the genetic architecture of 10 pear fruit phenotypes (including sensory traits) and the potential of GS using genotyping-by-sequencing of 550 hybrid seedlings from nine interrelated full-sib families. Results from GWA suggested a complex polygenic nature of all 10 traits as the maximum variance explained by each marker was less than 4% of the phenotypic variance. The effect-size of SNPs for each trait suggested many genes of small effect and few of moderate effect. Some genomic regions associated with pear sensory traits were similar to those reported for apple - possibly a result of high synteny between the apple and pear genomes. The average (across nine families) GS accuracy varied from 0.32 (for crispness) to 0.62 (for sweetness), with an across-trait average of 0.42. Further efforts are needed to develop larger genotype-phenotype datasets in order to predict fruit phenotypes of untested seedlings with sufficient efficiency.


Assuntos
Marcadores Genéticos , Genoma de Planta , Pyrus/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
4.
Hortic Res ; 6: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30651990

RESUMO

Red skin colour is an important target trait in various pear breeding programmes. In this study, the genetic control of red skin colour was investigated in an interspecific population derived using the descendants of the red sport European pear cultivar 'Max Red Bartlett' (MRB) and the red-blushed Chinese pear cultivar 'Huobali'. Approximately 550 seedlings from nine families were phenotyped for red skin over-colour coverage (Ocolcov) and the intensity of red over-colour (Ocolint) on a 0-9 scale, and genotyped using genotyping-by-sequencing. Genome-wide association analyses were conducted using 7500 high-quality single nucleotide polymorphisms (SNPs). Genomic regions on linkage groups (LG) 4 and 5 were found to be associated, and the best SNP (S578_25116) on LG4 accounted for ~15% of phenotypic variation in Ocolcov and Ocolint. The association of S578_25116 with Ocolcov and Ocolint was successfully validated in a sample of ~200 European and Asian pear accessions. The association with red skin at locus S578_25116 was not present in Asian pear accessions, suggesting its close proximity to the MRB's Cardinal gene. Several putative candidate genes, including MYB transcription factors (PCP027962 and PCP027967), were identified in the quantitative trait locus region on LG4 and await functional validation.

5.
Hortic Res ; 4: 17015, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28451438

RESUMO

Understanding of genetic diversity and marker-trait relationships in pears (Pyrus spp.) forms an important part of gene conservation and cultivar breeding. Accessions of Asian and European pear species, and interspecific hybrids were planted in a common garden experiment. Genotyping-by-sequencing (GBS) was used to genotype 214 accessions, which were also phenotyped for fruit quality traits. A combination of selection scans and association analyses were used to identify signatures of selection. Patterns of genetic diversity, population structure and introgression were also investigated. About 15 000 high-quality SNP markers were identified from the GBS data, of which 25% and 11% harboured private alleles for European and Asian species, respectively. Bayesian clustering analysis suggested negligible gene flow, resulting in highly significant population differentiation (Fst=0.45) between Asian and European pears. Interspecific hybrids displayed an average of 55% and 45% introgression from their Asian and European ancestors, respectively. Phenotypic (firmness, acidity, shape and so on) variation between accessions was significantly associated with genetic differentiation. Allele frequencies at large-effect SNP loci were significantly different between genetic groups, suggesting footprints of directional selection. Selection scan analyses identified over 20 outlier SNP loci with substantial statistical support, likely to be subject to directional selection or closely linked to loci under selection.

6.
Hortic Res ; 3: 15064, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770810

RESUMO

Deleterious epistatic interactions in plant inter- and intraspecific hybrids can cause a phenomenon known as hybrid necrosis, characterized by a typical seedling phenotype whose main distinguishing features are dwarfism, tissue necrosis and in some cases lethality. Identification of the chromosome regions associated with this type of incompatibility is important not only to increase our understanding of the evolutionary diversification that led to speciation but also for breeding purposes. Development of molecular markers linked to the lethal genes will allow breeders to avoid incompatible inbred combinations that could affect the expression of important agronomic tratis co-segregating with these genes. Although hybrid necrosis has been reported in several plant taxa, including Rosaceae species, this phenomenon has not been described previously in pear. In the interspecific pear population resulting from a cross between PEAR3 (Pyrus bretschneideri × Pyrus communis) and 'Moonglow' (P. communis), we observed two types of hybrid necrosis, expressed at different stages of plant development. Using a combination of previously mapped and newly developed genetic markers, we identified three chromosome regions associated with these two types of lethality, which were genetically independent. One type resulted from a negative epistatic interaction between a locus on linkage group 5 (LG5) of PEAR3 and a locus on LG1 of 'Moonglow', while the second type was due to a gene that maps to LG2 of PEAR3 and which either acts alone or more probably interacts with another gene of unknown location inherited from 'Moonglow'.

7.
BMC Plant Biol ; 14: 241, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25224302

RESUMO

BACKGROUND: The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. RESULTS: Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. CONCLUSIONS: The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first reported for pear. We conclude that the postharvest disorder FD is controlled by multiple small effect QTLs and that it will be very challenging to apply marker-assisted selection based on these QTLs. However, genomic selection could be employed to select elite genotypes with lower or no susceptibility to FD early in the breeding cycle.


Assuntos
Frutas/fisiologia , Genoma de Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Pyrus/fisiologia , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Fricção , Frutas/genética , Frutas/crescimento & desenvolvimento , Ligação Genética , Marcadores Genéticos/genética , Genótipo , Fenótipo , Pigmentação , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
8.
PLoS One ; 9(4): e92644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699266

RESUMO

We present a draft assembly of the genome of European pear (Pyrus communis) 'Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of 'Louise Bonne de Jersey' and 'Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The 'Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas , Genoma de Planta , Pyrus/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Marcadores Genéticos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Malus/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Proteoma/análise , RNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico
9.
PLoS One ; 8(10): e77022, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155917

RESUMO

We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.


Assuntos
Mapeamento Cromossômico , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética , Pyrus/genética , Alelos , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Europa (Continente) , Marcadores Genéticos , Genoma de Planta/genética , Técnicas de Genotipagem , Malus/genética , Repetições de Microssatélites/genética , Linhagem , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA