Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(5): H675-H685, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930654

RESUMO

Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-ß, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-ß (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-ß), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-ß) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.


Assuntos
Micropartículas Derivadas de Células , Insuficiência Cardíaca , Hipertensão , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Troponina T/metabolismo , Óxido Nítrico/metabolismo , Actinina/metabolismo , Actinina/farmacologia , NF-kappa B/metabolismo , Hipertensão/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Micropartículas Derivadas de Células/metabolismo , Obesidade/metabolismo , Insuficiência Cardíaca/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose
2.
Physiol Rep ; 6(6): e13647, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595877

RESUMO

The aim of this study was to determine, in vitro, the effects of X4 and R5 HIV-1 gp120 and Tat on: (1) endothelial cell senescence and (2) endothelial cell microRNA (miR) expression. Endothelial cells were treated with media without and with: R5 gp120 (100 ng/mL), X4 gp120 (100 ng/mL), or Tat (500 ng/mL) for 24 h and stained for senescence-associated ß-galactosidase (SA-ß-gal). Cell expression of miR-34a, miR-217, and miR-146a was determined by RT-PCR. X4 and R5 gp120 and Tat significantly increased (~100%) cellular senescence versus control. X4 gp120 significantly increased cell expression of miR-34a (1.60 ± 0.04 fold) and miR-217 (1.52 ± 0.18), but not miR-146a (1.25 ± 0.32). R5 gp120 significantly increased miR-34a (1.23 ± 0.07) and decreased miR-146a (0.56 ± 0.07). Tat significantly increased miR-34a (1.49 ± 0.16) and decreased miR-146a (0.55 ± 0.23). R5 and Tat had no effect on miR-217 (1.05 ± 0.13 and 1.06 ± 0.24; respectively). HIV-1 gp120 (X4 and R5) and Tat promote endothelial cell senescence and dysregulation of senescence-associated miRs.


Assuntos
Senescência Celular/fisiologia , Células Endoteliais/patologia , Proteína gp120 do Envelope de HIV , MicroRNAs/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Doenças Cardiovasculares/virologia , Células Cultivadas , Infecções por HIV/complicações , Humanos
3.
Biochem Biophys Res Commun ; 493(2): 1026-1029, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-28942148

RESUMO

The experimental aim of this study was to determine the effects of high glucose-induced endothelial microparticles (EMPs) on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 × 105 cells/condition. Cells were incubated with media containing 25 mM d-glucose (concentration representing a diabetic glycemic state) or 5 mM d-glucose (normoglycemic condition) for 48 h to generate EMPs. EMP identification (CD144+ expression) and concentration was determined by flow cytometry. HUVECs (3 × 106 cells/condition) were treated with EMPs generated from either the normal or high glucose conditions for 24 h. Intracellular concentration of active caspase-3 was determined by enzyme immunoassay. Cellular expression of miR-Let7a, an anti-apoptotic microRNA, was determined by RT-PCR using the ΔΔCT normalized to RNU6. High glucose-derived EMPs significantly increased both basal (1.5 ± 0.1 vs 1.0 ± 0.1 ng/mL) and staurosporine-stimulated (2.2 ± 0.2 vs 1.4 ± 0.1 ng/mL) active caspase-3 compared with normal glucose EMPs. Additionally, the expression of miR-Let-7a was markedly reduced (∼140%) by high glucose EMPs (0.43 ± 0.17 fold vs control). These results demonstrate that hyperglycemic-induced EMPs increase endothelial cell active caspase-3. This apoptotic effect may be mediated, at least in part, by a reduction in miR-Let-7a expression.


Assuntos
Caspase 3/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , MicroRNAs/genética , Apoptose , Micropartículas Derivadas de Células/genética , Regulação para Baixo , Células Endoteliais/citologia , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA