Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cardiovasc Res ; 118(3): 772-784, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33914863

RESUMO

AIMS: The F-actin-binding protein Drebrin inhibits smooth muscle cell (SMC) migration, proliferation, and pro-inflammatory signalling. Therefore, we tested the hypothesis that Drebrin constrains atherosclerosis. METHODS AND RESULTS: SM22-Cre+/Dbnflox/flox/Ldlr-/- (SMC-Dbn-/-/Ldlr-/-) and control mice (SM22-Cre+/Ldlr-/-, Dbnflox/flox/Ldlr-/-, and Ldlr-/-) were fed a western diet for 14-20 weeks. Brachiocephalic arteries of SMC-Dbn -/-/Ldlr-/- mice exhibited 1.5- or 1.8-fold greater cross-sectional lesion area than control mice at 14 or 20 weeks, respectively. Aortic atherosclerotic lesion surface area was 1.2-fold greater in SMC-Dbn-/-/Ldlr-/- mice. SMC-Dbn-/-/Ldlr-/- lesions comprised necrotic cores that were two-fold greater in size than those of control mice. Consistent with their bigger necrotic core size, lesions in SMC-Dbn-/- arteries also showed more transdifferentiation of SMCs to macrophage-like cells: 1.5- to 2.5-fold greater, assessed with BODIPY or with CD68, respectively. In vitro data were concordant: Dbn-/- SMCs had 1.7-fold higher levels of KLF4 and transdifferentiated to macrophage-like cells more readily than Dbnflox/flox SMCs upon cholesterol loading, as evidenced by greater up-regulation of CD68 and galectin-3. Adenovirally mediated Drebrin rescue produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. During early atherogenesis, SMC-Dbn-/-/Ldlr-/- aortas demonstrated 1.6-fold higher levels of reactive oxygen species than control mouse aortas. The 1.8-fold higher levels of Nox1 in Dbn-/- SMCs were reduced to WT levels with KLF4 silencing. Inhibition of Nox1 chemically or with siRNA produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. CONCLUSION: We conclude that SMC Drebrin limits atherosclerosis by constraining SMC Nox1 activity and SMC transdifferentiation to macrophage-like cells.


Assuntos
Aterosclerose , Transdiferenciação Celular , Miócitos de Músculo Liso , Neuropeptídeos/genética , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Cultivadas , Estudos Transversais , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/genética
2.
Arterioscler Thromb Vasc Biol ; 38(10): 2295-2305, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354204

RESUMO

Objective- Signaling that activates NFκB (nuclear factor κB) in smooth muscle cells (SMCs) is integral to atherosclerosis and involves reversible ubiquitination that activates proteins downstream of proatherogenic receptors. Deubiquitination of these proteins is mediated by USP20 (ubiquitin-specific protease 20), among other deubiquitinases. We sought to determine whether USP20 activity in SMCs decreases atherosclerosis. Approach and Results- To address this question, we used male Ldlr-/- mice without (control) or with SMC-specific expression of murine USP20 (SMC-USP20-transgenic) or its dominant-negative (DN; C154S/H643Q) mutant (SMC-DN-USP20-transgenic). Before the appearance of intimal macrophages, NFκB activation in aortic medial SMCs was greater in SMC-DN-USP20-transgenic than in control mice. After 16 weeks on a Western diet, SMC-DN-USP20-transgenic mice had 46% greater brachiocephalic artery atheroma area than control mice. Congruently, aortic atherosclerosis assessed en face was 21% greater than control in SMC-DN-USP20-transgenic mice and 13% less than control in SMC-USP20-transgenic mice. In response to TNF (tumor necrosis factor), SMCs from SMC-DN-USP20-transgenic mice showed ≈3-fold greater NFκB activation than control SMCs. Silencing USP20 in SMCs with siRNA (small interfering RNA) augmented NFκB activation by ≈50% in response to either TNF or IL-1ß (interleukin-1ß). Coimmunoprecipitation experiments revealed that USP20 associates with several components of the TNFR1 (TNF receptor-1) signaling pathway, including RIPK1 (receptor-interacting protein kinase 1), a critical checkpoint in TNF-induced NFκB activation and inflammation. TNF evoked ≈2-fold more RIPK1 ubiquitination in SMC-DN-USP20-transgenic than in control SMCs, and RIPK1 was deubiquitinated by purified USP20 in vitro. Conclusions- USP20 attenuates TNF- and IL-1ß-evoked atherogenic signaling in SMCs, by deubiquitinating RIPK1, among other signaling intermediates.


Assuntos
Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Endopeptidases/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Aortite/enzimologia , Aortite/genética , Aortite/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Endopeptidases/genética , Feminino , Hiperplasia , Interleucina-1beta/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Neointima , Placa Aterosclerótica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de LDL , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina Tiolesterase , Ubiquitinação
3.
Cardiovasc Res ; 114(13): 1806-1815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931051

RESUMO

Aims: The actin-binding protein Drebrin is up-regulated in response to arterial injury and reduces smooth muscle cell (SMC) migration and proliferation through its interaction with the actin cytoskeleton. We, therefore, tested the hypothesis that SMC Drebrin inhibits angiotensin II-induced remodelling of the proximal aorta. Methods and results: Angiotensin II was administered via osmotic minipumps at 1000 ng/kg/min continuously for 28 days in SM22-Cre+/Dbnflox/flox (SMC-Dbn-/-) and control mice. Blood pressure responses to angiotensin II were assessed by telemetry. After angiotensin II infusion, we assessed remodelling in the proximal ascending aorta by echocardiography and planimetry of histological cross sections. Although the degree of hypertension was equivalent in SMC-Dbn-/- and control mice, SMC-Dbn-/- mice nonetheless exhibited 60% more proximal aortic medial thickening and two-fold more outward aortic remodelling than control mice in response to angiotensin II. Proximal aortas demonstrated greater cellular proliferation and matrix deposition in SMC-Dbn-/- mice than in control mice, as evidenced by a higher prevalence of proliferating cell nuclear antigen-positive nuclei and higher levels of collagen I. Compared with control mouse aortas, SMC-Dbn-/- aortas demonstrated greater angiotensin II-induced NADPH oxidase activation and inflammation, evidenced by higher levels of Ser-536-phosphorylated NFκB p65 subunits and higher levels of vascular cell adhesion molecule-1, matrix metalloproteinase-9, and adventitial macrophages. Conclusions: We conclude that SMC Drebrin deficiency augments angiotensin II-induced inflammation and adverse aortic remodelling.


Assuntos
Angiotensina II , Doenças da Aorta/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neuropeptídeos/metabolismo , Remodelação Vascular , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Pressão Arterial , Proliferação de Células , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , NADPH Oxidases/metabolismo , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Cardiovasc Res ; 113(13): 1551-1559, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048463

RESUMO

AIMS: Chronic kidney disease (CKD) is a powerful independent risk factor for cardiovascular events, including vein graft failure. Because CKD impairs the clearance of small proteins, we tested the hypothesis that CKD exacerbates vein graft disease by elevating serum levels of critical cytokines that promote vein graft neointimal hyperplasia. METHODS AND RESULTS: We modelled CKD in C57BL/6 mice with 5/6ths nephrectomy, which reduced glomerular filtration rate by 60%, and we modelled vein grafting with inferior-vena-cava-to-carotid interposition grafting. CKD increased vein graft neointimal hyperplasia four-fold, decreased vein graft re-endothelialization two-fold, and increased serum levels of interleukin-9 (IL-9) five-fold. By quantitative immunofluorescence and histochemical staining, vein grafts from CKD mice demonstrated a ∼two-fold higher prevalence of mast cells, and a six-fold higher prevalence of activated mast cells. Concordantly, vein grafts from CKD mice showed higher levels of TNF and NFκB activation, as judged by phosphorylation of NFκB p65 on Ser536 and by expression of VCAM-1. Arteriovenous fistula veins from humans with CKD also showed up-regulation of mast cells and IL-9. Treating CKD mice with IL-9-neutralizing IgG reduced vein graft neointimal area four-fold, increased vein graft re-endothelialization ∼two-fold, and reduced vein graft total and activated mast cell levels two- and four-fold, respectively. Treating CKD mice with the mast cell stabilizer cromolyn reduced neointimal hyperplasia and increased re-endothelialization in vein grafts. In vitro, IL-9 promoted endothelial cell apoptosis but had no effect on smooth muscle cell proliferation. CONCLUSION: CKD aggravates vein graft disease through mechanisms involving IL-9 and mast cell activation.


Assuntos
Derivação Arteriovenosa Cirúrgica , Artéria Carótida Primitiva/cirurgia , Interleucina-9/metabolismo , Mastócitos/metabolismo , Insuficiência Renal Crônica/complicações , Doenças Vasculares/complicações , Veia Cava Inferior/transplante , Animais , Apoptose , Artéria Carótida Primitiva/imunologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hiperplasia , Interleucina-9/imunologia , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Neointima , Fosforilação , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Doenças Vasculares/imunologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Veia Cava Inferior/imunologia , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia
5.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878120

RESUMO

The oncoprotein Mdm2 is a RING domain-containing E3 ubiquitin ligase that ubiquitinates G protein-coupled receptor kinase 2 (GRK2) and ß-arrestin2, thereby regulating ß-adrenergic receptor (ßAR) signaling and endocytosis. Previous studies showed that cardiac Mdm2 expression is critical for controlling p53-dependent apoptosis during early embryonic development, but the role of Mdm2 in the developed adult heart is unknown. We aimed to identify if Mdm2 affects ßAR signaling and cardiac function in adult mice. Using Mdm2/p53-KO mice, which survive for 9-12 months, we identified a critical and potentially novel role for Mdm2 in the adult mouse heart through its regulation of cardiac ß1AR signaling. While baseline cardiac function was mostly similar in both Mdm2/p53-KO and wild-type (WT) mice, isoproterenol-induced cardiac contractility in Mdm2/p53-KO was significantly blunted compared with WT mice. Isoproterenol increased cAMP in left ventricles of WT but not of Mdm2/p53-KO mice. Additionally, while basal and forskolin-induced calcium handling in isolated Mdm2/p53-KO and WT cardiomyocytes were equivalent, isoproterenol-induced calcium handling in Mdm2/p53-KO was impaired. Mdm2/p53-KO hearts expressed 2-fold more GRK2 than WT. GRK2 polyubiquitination via lysine-48 linkages was significantly reduced in Mdm2/p53-KO hearts. Tamoxifen-inducible cardiomyocyte-specific deletion of Mdm2 in adult mice also led to a significant increase in GRK2, and resulted in severely impaired cardiac function, high mortality, and no detectable ßAR responsiveness. Gene delivery of either Mdm2 or GRK2-CT in vivo using adeno-associated virus 9 (AAV9) effectively rescued ß1AR-induced cardiac contractility in Mdm2/p53-KO. These findings reveal a critical p53-independent physiological role of Mdm2 in adult hearts, namely, regulation of GRK2-mediated desensitization of ßAR signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Contração Miocárdica/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Ecocardiografia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Coração/diagnóstico por imagem , Coração/fisiologia , Hemodinâmica/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
6.
World J Emerg Surg ; 12: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769999

RESUMO

BACKGROUND: Selective non-operative management (NOM) for the treatment of blunt splenic trauma is safe. Currently, the feasibility of selective NOM for penetrating splenic injury (PSI) is unclear. Unfortunately, little is known about the success rate of spleen-preserving surgical procedures. The aim of this study was to investigate the outcome of selective NOM for penetrating splenic injuries. METHODS: A dual-centre study is performed in two level-one trauma centres. All identified patients treated for PSI were identified. Patients were grouped based on the treatment they received. Group one consisted of splenectomised patients, the second group included patients treated by a spleen-preserving surgical intervention, and group three included those patients who were treated by NOM. RESULTS: A total of 118 patients with a median age of 27 and a median ISS of 25 (interquartile range (IQR) 16-34) were included. Ninety-six patients required operative intervention, of whom 45 underwent a total splenectomy and 51 underwent spleen-preserving surgical procedures. Furthermore, 22 patients (12 stab wounds and 10 gunshot wounds) were treated by NOM. There were several anticipated significant differences in the baseline encountered. The median hospitalization time was 8 (5-12) days, with no significant differences between the groups. The splenectomy group had significantly more intensive care unit (ICU) days (2(0-6) vs. 0(0-1)) and ventilation days (1(0-3) vs. 0(0-0)) compared to the NOM group. Mortality was only noted in the splenectomy group. CONCLUSIONS: Spleen-preserving surgical therapy for PSI is a feasible treatment modality and is not associated with increased mortality. Moreover, a select group of patients can be treated without any surgical intervention at all.


Assuntos
Baço/lesões , Ferimentos Penetrantes/terapia , Adulto , Feminino , Humanos , Escala de Gravidade do Ferimento , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Masculino , Estudos Retrospectivos , África do Sul , Esplenopatias/fisiopatologia , Esplenopatias/terapia , Tomografia Computadorizada por Raios X/métodos , Centros de Traumatologia/organização & administração , Centros de Traumatologia/estatística & dados numéricos , Resultado do Tratamento , Ferimentos por Arma de Fogo , Ferimentos Perfurantes
7.
Arterioscler Thromb Vasc Biol ; 36(5): 984-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27013612

RESUMO

OBJECTIVE: Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS: Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS: Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Neuropeptídeos/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Genótipo , Proteínas de Arcabouço Homer/metabolismo , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fenótipo , Ligação Proteica , Transdução de Sinais , Transfecção , Canais de Potencial de Receptor Transitório/metabolismo , Remodelação Vascular
8.
J Biol Chem ; 291(14): 7450-64, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26839314

RESUMO

Toll-like receptor 4 (TLR4) promotes vascular inflammatory disorders such as neointimal hyperplasia and atherosclerosis. TLR4 triggers NFκB signaling through the ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6). TRAF6 activity can be impeded by deubiquitinating enzymes like ubiquitin-specific protease 20 (USP20), which can reverse TRAF6 autoubiquitination, and by association with the multifunctional adaptor protein ß-arrestin2. Although ß-arrestin2 effects on TRAF6 suggest an anti-inflammatory role, physiologic ß-arrestin2 promotes inflammation in atherosclerosis and neointimal hyperplasia. We hypothesized that anti- and proinflammatory dimensions of ß-arrestin2 activity could be dictated by ß-arrestin2's ubiquitination status, which has been linked with its ability to scaffold and localize activated ERK1/2 to signalosomes. With purified proteins and in intact cells, our protein interaction studies showed that TRAF6/USP20 association and subsequent USP20-mediated TRAF6 deubiquitination were ß-arrestin2-dependent. Generation of transgenic mice with smooth muscle cell-specific expression of either USP20 or its catalytically inactive mutant revealed anti-inflammatory effects of USP20in vivoandin vitro Carotid endothelial denudation showed that antagonizing smooth muscle cell USP20 activity increased NFκB activation and neointimal hyperplasia. We found that ß-arrestin2 ubiquitination was promoted by TLR4 and reversed by USP20. The association of USP20 with ß-arrestin2 was augmented when ß-arrestin2 ubiquitination was prevented and reduced when ß-arrestin2 ubiquitination was rendered constitutive. Constitutive ß-arrestin2 ubiquitination also augmented NFκB activation. We infer that pro- and anti-inflammatory activities of ß-arrestin2 are determined by ß-arrestin2 ubiquitination and that changes in USP20 expression and/or activity can therefore regulate inflammatory responses, at least in part, by defining the ubiquitination status of ß-arrestin2.


Assuntos
Arrestinas/metabolismo , Endopeptidases/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Ubiquitinação/fisiologia , Animais , Arrestinas/genética , Linhagem Celular , Endopeptidases/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/genética , Ubiquitina Tiolesterase , beta-Arrestinas
9.
J Clin Invest ; 123(10): 4232-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23999430

RESUMO

Activation of cells intrinsic to the vessel wall is central to the initiation and progression of vascular inflammation. As the dominant cellular constituent of the vessel wall, vascular smooth muscle cells (VSMCs) and their functions are critical determinants of vascular disease. While factors that regulate VSMC proliferation and migration have been identified, the endogenous regulators of VSMC proinflammatory activation remain incompletely defined. The Kruppel-like family of transcription factors (KLFs) are important regulators of inflammation. In this study, we identified Kruppel-like factor 15 (KLF15) as an essential regulator of VSMC proinflammatory activation. KLF15 levels were markedly reduced in human atherosclerotic tissues. Mice with systemic and smooth muscle-specific deficiency of KLF15 exhibited an aggressive inflammatory vasculopathy in two distinct models of vascular disease: orthotopic carotid artery transplantation and diet-induced atherosclerosis. We demonstrated that KLF15 alters the acetylation status and activity of the proinflammatory factor NF-κB through direct interaction with the histone acetyltransferase p300. These studies identify a previously unrecognized KLF15-dependent pathway that regulates VSMC proinflammatory activation.


Assuntos
Aterosclerose/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Vasculite/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/imunologia , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Vasculite/imunologia , Fatores de Transcrição de p300-CBP/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 33(4): 702-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23288169

RESUMO

OBJECTIVE: Kalirin is a multifunctional protein that contains 2 guanine nucleotide exchange factor domains for the GTPases Rac1 and RhoA. Variants of KALRN have been associated with atherosclerosis in humans, but Kalirin's activity has been characterized almost exclusively in the central nervous system. We therefore tested the hypothesis that Kalirin functions as a Rho-guanine nucleotide exchange factor in arterial smooth muscle cells (SMCs). APPROACH AND RESULTS: Kalirin-9 protein is expressed abundantly in aorta and bone marrow, as well as in cultured SMCs, endothelial cells, and macrophages. Moreover, arterial Kalirin was upregulated during early atherogenesis in apolipoprotein E-deficient mice. In cultured SMCs, signaling was affected similarly in 3 models of Kalirin loss-of-function: heterozygous Kalrn deletion, Kalirin RNAi, and treatment with the Kalirin Rho-guanine nucleotide exchange factor -1 inhibitor 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione. With reduced Kalirin function, SMCs showed normal RhoA activation but diminished Rac1 activation, assessed as reduced Rac-GTP levels, p21-activated kinase autophosphorylation, and SMC migration. Kalrn(-/+) SMCs proliferated 30% less rapidly than wild-type SMCs. Neointimal hyperplasia engendered by carotid endothelial denudation was ≈60% less in Kalrn(-/+) and SMC-specific Kalrn(-/+) mice than in control mice. CONCLUSIONS: Kalirin functions as a guanine nucleotide exchange factor for Rac1 in SMCs, and promotes SMC migration and proliferation both in vitro and in vivo.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neointima , Neuropeptídeos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativação Enzimática , Genótipo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Hiperplasia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Transfecção , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
11.
J Vasc Surg ; 56(5): 1390-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22796120

RESUMO

OBJECTIVE: Because vein graft neointimal hyperplasia engenders vein graft failure, and because most vein graft neointimal cells derive from outside the vein graft, we sought to determine whether vein graft neointimal hyperplasia is affected by activity of the CXC chemokine receptor-4 (CXCR4), which is important for bone marrow-derived cell migration. METHODS: In congenic Cxcr4(-/+) and wild-type (WT) recipient mice, we performed interposition grafting of the common carotid artery with the inferior vena cava (IVC) of either Cxcr4(-/+) or WT mice to create four surgically chimeric groups of mice (n ≥ 5 each), characterized by vein graft donor/recipient: WT/WT; Cxcr4(-/+)/WT; WT/Cxcr4(-/+); and Cxcr4(-/+)/Cxcr4(-/+); vein grafts were harvested 6 weeks postoperatively. RESULTS: The agonist for CXCR4 is expressed by cells in the arterializing vein graft. Vein graft neointimal hyperplasia was reduced by reducing CXCR4 activity in vein graft-extrinsic cells, but not in vein graft-intrinsic cells: the rank order of neointimal hyperplasia was WT/WT ≈ Cxcr4(-/+)/WT > WT/Cxcr4(-/+) ≈ Cxcr4(-/+)/Cxcr4(-/+); CXCR4 deficiency in graft-extrinsic cells reduced neointimal hyperplasia by 39% to 47% (P < .05). Vein graft medial area was equivalent in all grafts except Cxcr4(-/+)/Cxcr4(-/+), in which the medial area was 60% ± 20% greater (P < .05). Vein graft re-endothelialization was indistinguishable among all three vein graft groups. However, the prevalence of medial leukocytes was 40% ± 10% lower in Cxcr4(-/+)/Cxcr4(-/+) than in WT/WT vein grafts (P < .05), and the prevalence of smooth muscle actin-positive cells was 45% ± 20% higher (P < .05). CONCLUSIONS: We conclude that CXCR4 contributes to vein graft neointimal hyperplasia through mechanisms that alter homing to the vein graft of graft-extrinsic cells, particularly leukocytes. CLINICAL RELEVANCE: The utility of autologous vein grafts is severely reduced by neointimal hyperplasia, which accelerates subsequent graft atherosclerosis. Our study demonstrates that vein graft neointimal hyperplasia is aggravated by activity of the cell-surface "CXC" chemokine receptor-4 (CXCR4), which is critical for recruitment of bone marrow-derived cells to sites of inflammation. Our model for CXCR4 deficiency used mice with heterozygous deficiency of Cxcr4. Consequently, our results suggest the possibility that a CXCR4 antagonist--like plerixafor, currently in clinical use--could be applied to vein grafts periadventitially, and perhaps achieve beneficial effects on vein graft neointimal hyperplasia.


Assuntos
Neointima/patologia , Receptores CXCR4/fisiologia , Veias/patologia , Veias/transplante , Animais , Progressão da Doença , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
Arterioscler Thromb Vasc Biol ; 32(2): 308-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095977

RESUMO

OBJECTIVE: G protein-coupled receptor kinase-5 (GRK5) is a widely expressed Ser/Thr kinase that regulates several atherogenic receptors and may activate or inhibit nuclear factor-κB (NF-κB). This study sought to determine whether and by what mechanisms GRK5 affects atherosclerosis. METHODS AND RESULTS: Grk5(-/-)/Apoe(-/-) mice developed 50% greater aortic atherosclerosis than Apoe(-/-) mice and demonstrated greater proliferation of macrophages and smooth muscle cells (SMCs) in atherosclerotic lesions. In Apoe(-/-) mice, carotid interposition grafts from Grk5(-/-) mice demonstrated greater upregulation of cell adhesion molecules than grafts from wild-type mice and, subsequently, more atherosclerosis. By comparing Grk5(-/-) with wild-type cells, we found that GRK5 desensitized 2 key atherogenic receptor tyrosine kinases: the platelet-derived growth factor receptor-ß in SMCs, by augmenting ubiquitination/degradation; and the colony-stimulating factor-1 receptor (CSF-1R) in macrophages, by reducing CSF-1-induced tyrosyl phosphorylation. GRK5 activity in monocytes also reduced migration promoted by the 7-transmembrane receptor for monocyte chemoattractant protein-1 CC chemokine receptor-2. Whereas GRK5 diminished NF-κB-dependent gene expression in SMCs and endothelial cells, it had no effect on NF-κB activity in macrophages. CONCLUSIONS: GRK5 attenuates atherosclerosis through multiple cell type-specific mechanisms, including reduction of SMC and endothelial cell NF-κB activity and desensitization of receptor-specific signaling through the monocyte CC chemokine receptor-2, macrophage CSF-1R, and the SMC platelet-derived growth factor receptor-ß.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/fisiologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Quinase 5 de Receptor Acoplado a Proteína G/deficiência , Quinase 5 de Receptor Acoplado a Proteína G/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 30(11): 2150-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798381

RESUMO

OBJECTIVE: To accelerate vein graft reendothelialization and reduce vein graft thrombosis by infusing human umbilical cord blood-derived endothelial cells (hCB-ECs) because loss of endothelium contributes to vein graft thrombosis and neointimal hyperplasia. METHODS AND RESULTS: Under steady flow conditions in vitro, hCB-ECs adhered to smooth muscle cells 2.5 to 13 times more than ECs derived from peripheral blood or human aorta (P<0.05). Compared with peripheral blood and human aorta ECs, hCB-ECs had 1.4-fold more cell surface α(5)ß(1) integrin heterodimers per cell (P<0.05) and proliferated on fibronectin 4- to 10-fold more rapidly (P<0.05). Therefore, we used hCB-ECs to enhance reendothelialization of carotid interposition vein grafts implanted in NOD.CB17-Prkdc(scid)/J mice. Two weeks postoperatively, vein grafts from hCB-EC-treated mice demonstrated approximately 55% reendothelialization and no luminal thrombosis. In contrast, vein grafts from sham-treated mice demonstrated luminal thrombosis in 75% of specimens (P<0.05) and only approximately 14% reendothelialization. In vein grafts from hCB-EC-treated mice, 33±10% of the endothelium was of human origin, as judged by human major histocompatibility class I expression. CONCLUSIONS: The hCB-ECs adhere to smooth muscle cells under flow conditions in vitro, accelerate vein graft reendothelialization in vivo, and prevent vein graft thrombosis. Thus, hCB-ECs offer novel therapeutic possibilities for vein graft disease.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Oclusão de Enxerto Vascular/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Trombose/prevenção & controle , Veias/cirurgia , Animais , Prótese Vascular , Células Cultivadas , Sangue Fetal/citologia , Humanos , Camundongos , Veias/fisiopatologia , Cicatrização/fisiologia
14.
Hum Mol Genet ; 19(14): 2754-66, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421368

RESUMO

Aging is believed to be among the most important contributors to atherosclerosis, through mechanisms that remain largely obscure. Serum levels of tumor necrosis factor (TNF) rise with aging and have been correlated with the incidence of myocardial infarction. We therefore sought to determine whether genetic variation in the TNF receptor-1 gene (TNFR1) contributes to aging-related atherosclerosis in humans and whether Tnfr1 expression aggravates aging-related atherosclerosis in mice. With 1330 subjects from a coronary angiography database, we performed a case-control association study of coronary artery disease (CAD) with 16 TNFR1 single-nucleotide polymorphisms (SNPs). Two TNFR1 SNPs significantly associated with CAD in subjects >55 years old, and this association was supported by analysis of a set of 759 independent CAD cases. In multiple linear regression analysis, accounting for TNFR1 SNP rs4149573 significantly altered the relationship between aging and CAD index among 1811 subjects from the coronary angiography database. To confirm that TNFR1 contributes to aging-dependent atherosclerosis, we grafted carotid arteries from 18- and 2-month-old wild-type (WT) and Tnfr1(-/-) mice into congenic apolipoprotein E-deficient (Apoe(-/-)) mice and harvested grafts from 1 to 7 weeks post-operatively. Aged WT arteries developed accelerated atherosclerosis associated with enhanced TNFR1 expression, enhanced macrophage recruitment, reduced smooth muscle cell proliferation and collagen content, augmented apoptosis and plaque hemorrhage. In contrast, aged Tnfr1(-/-) arteries developed atherosclerosis that was indistinguishable from that in young Tnfr1(-/-) arteries and significantly less than that observed in aged WT arteries. We conclude that TNFR1 polymorphisms associate with aging-related CAD in humans, and TNFR1 contributes to aging-dependent atherosclerosis in mice.


Assuntos
Envelhecimento/fisiologia , Artérias/metabolismo , Aterosclerose/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Regulação para Cima/genética
15.
Circ Res ; 103(1): 70-9, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18519945

RESUMO

Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.


Assuntos
Aorta/metabolismo , Arrestinas/metabolismo , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/patologia , Arrestinas/genética , Aterosclerose/genética , Aterosclerose/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Oclusão de Enxerto Vascular/genética , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/patologia , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , beta-Arrestinas
16.
Arterioscler Thromb Vasc Biol ; 28(2): 284-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18006858

RESUMO

OBJECTIVE: Inflammation appears intricately linked to vein graft arterialization. We have previously shown that tumor necrosis factor (TNF) receptor-1 (TNFR1, p55) signaling augments vein graft neointimal hyperplasia (NH) and remodeling through its effects on vascular smooth muscle cells (SMCs). In this study we examined the role of TNFR2 (p75) signaling in vein graft arterialization. METHODS AND RESULTS: Inferior vena cava-to-carotid artery interposition grafting was performed between p75-/- and congenic (C57B1/6J) wild-type (WT) mice. Six weeks postoperatively, neointimal and medial dimensions were greater in p75-/- grafts placed into p75-/- recipients (by 42% or 60%, respectively; P<0.05), when compared with WT veins grafted into WT recipients. Relative to WT vein grafts, p75 deficiency augmented early (2-week-old) graft vascular cell adhesion molecule (VCAM)-1 expression (by 2.4-fold, P<0.05), increased endothelial cell apoptosis (2-fold), and delayed graft re-endothelialization. Both cellular proliferation in early, and collagen I content of mature (6-week-old) vein grafts were increased (by 70% and 50%, respectively) in p75-/- grafts. P75 deficiency augmented TNF-induced apoptosis of cultured endothelial cells, but did not affect TNF-stimulated SMC proliferation or migration induced by co-cultured macrophages. CONCLUSIONS: TNF signaling via p75 reduces vein graft neointimal hyperplasia through mechanisms involving reduction of adhesion molecule expression and endothelial cell apoptosis.


Assuntos
Endotélio Vascular/fisiopatologia , Hiperplasia/fisiopatologia , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Túnica Íntima/fisiopatologia , Veia Cava Inferior/transplante , Animais , Apolipoproteínas E/genética , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Masculino , Camundongos , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/fisiologia
17.
Arterioscler Thromb Vasc Biol ; 27(5): 1087-94, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17442899

RESUMO

OBJECTIVE: Mechanisms by which tumor necrosis factor-alpha (TNF) contributes to atherosclerosis remain largely obscure. We therefore sought to determine the role of the arterial wall TNF receptor-1 (TNFR1) in atherogenesis. METHODS AND RESULTS: Carotid artery-to-carotid artery interposition grafting was performed with tnfr1-/- and congenic (C57Bl/6) wild-type (WT) mice as graft donors, and congenic chow-fed apolipoprotein E-deficient mice as recipients. Advanced atherosclerotic graft lesions developed within 8 weeks, and had 2-fold greater area in WT than in tnfr1-/- grafts. While the prevalence of specific atheroma cells was equivalent in WT and tnfr1-/- grafts, the overall abundance of cells was substantially greater in WT grafts. WT grafts demonstrated greater MCP-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression at both early and late time points, and proliferating cell nuclear antigen expression at early time points. Aortic atherosclerosis was also reduced in 14-month-old apoe(-/-)/tnfr1(-/-) mice, as compared with cognate apoe-/- mice. In coculture with activated macrophages, smooth muscle cells expressing the TNFR1 demonstrated enhanced migration and reduced scavenger receptor activity. CONCLUSIONS: TNFR1 signaling, just in arterial wall cells, contributes to the pathogenesis of atherosclerosis by enhancing arterial wall chemokine and adhesion molecule expression, as well as by augmenting medial smooth muscle cell proliferation and migration.


Assuntos
Aterosclerose/metabolismo , Doenças das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Animais , Aterosclerose/patologia , Bioensaio , Biomarcadores/metabolismo , Doenças das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/cirurgia , Modelos Animais de Doenças , Progressão da Doença , Seguimentos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
J Biol Chem ; 281(49): 37758-72, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17018529

RESUMO

Smooth muscle cell (SMC) proliferation and migration are substantially controlled by the platelet-derived growth factor receptor-beta (PDGFRbeta), which can be regulated by the Ser/Thr kinase G protein-coupled receptor kinase-2 (GRK2). In mouse aortic SMCs, however, we found that prolonged PDGFRbeta activation engendered down-regulation of GRK5, but not GRK2; moreover, GRK5 and PDGFRbeta were coordinately up-regulated in SMCs from atherosclerotic arteries. With SMCs from GRK5 knock-out and cognate wild type mice (five of each), we found that physiologic expression of GRK5 increased PDGF-promoted PDGFRbeta seryl phosphorylation by 3-fold and reduced PDGFRbeta-promoted phosphoinositide hydrolysis, thymidine incorporation, and overall PDGFRbeta tyrosyl phosphorylation by approximately 35%. Physiologic SMC GRK5 activity also increased PDGFRbeta association with the phosphatase Shp2 (8-fold), enhanced phosphorylation of PDGFRbeta Tyr(1009) (the docking site for Shp2), and reduced phosphorylation of PDGFRbeta Tyr(1021). Consistent with having increased PDGFRbeta-associated Shp2 activity, GRK5-expressing SMCs demonstrated greater PDGF-induced Src activation than GRK5-null cells. GRK5-mediated desensitization of PDGFRbeta inositol phosphate signaling was diminished by Shp2 knock-down or impairment of PDGFRbeta/Shp2 association. In contrast to GRK5, physiologic GRK2 activity did not alter PDGFRbeta/Shp2 association. Finally, purified GRK5 effected agonist-dependent seryl phosphorylation of partially purified PDGFRbetas. We conclude that GRK5 mediates the preponderance of PDGF-promoted seryl phosphorylation of the PDGFRbeta in SMCs, and, through mechanisms involving Shp2, desensitizes PDGFRbeta inositol phosphate signaling and enhances PDGFRbeta-triggered Src activation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Sequência de Bases , Bovinos , Movimento Celular , Proliferação de Células , Células Cultivadas , Primers do DNA/genética , Quinase 5 de Receptor Acoplado a Proteína G , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Músculo Liso Vascular/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/genética , Interferência de RNA , Coelhos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
19.
Cardiovasc Res ; 65(3): 674-82, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15664394

RESUMO

OBJECTIVE: Because tumor necrosis factor-alpha (TNF) has been implicated in the pathogenesis of vein graft neointimal hyperplasia, we sought to determine mechanisms by which TNF could induce proliferative and migratory responses in smooth muscle cells (SMCs). METHODS AND RESULTS: In rabbit jugulocarotid interposition vein grafts, SMCs expressed TNF as early as four days postoperatively. In rabbit aortic SMCs, TNF and platelet-derived growth factor (PDGF) elicited comparable migration (1.7-fold/basal), and their effects were partially additive. In contrast, while TNF failed to promote SMC [(3)H]thymidine incorporation alone, it doubled the [(3)H]thymidine incorporation observed with PDGF alone. To gain mechanistic insight into these phenomena, we found that TNF and PDGF each activated p38(mapk) equivalently in SMCs, but that PDGF was two to three times more efficacious than TNF in activating SMC extracellular signal-regulated kinases (ERK) 1 and 2 and phosphoinositide 3-kinase. However, only TNF activated NF kappa B. SMC [(3)H]thymidine incorporation that depended on TNF, but not PDGF, was abolished by overexpression of a dominant-negative I kappa B alpha mutant. Inhibition of ERK activation by U0126 reduced SMC migration stimulated only by PDGF (by 35%, P<0.05), but not by TNF. Inhibition of phosphoinositide 3-kinase by LY294002, however, significantly reduced both TNF- and PDGF-stimulated chemotaxis (by 38-54%, P<0.05). In contrast, both U0126 and LY294002 abolished SMC [(3)H]thymidine incorporation induced by either TNF, PDGF, or both agonists. CONCLUSIONS: In primary rabbit SMCs, TNF promotes migration and mitogenesis through signaling mechanisms that are both distinct from and overlapping with those employed by PDGF. TNF-induced SMC mitogenesis requires complementary co-stimulation with other growth factors.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/patologia , Hiperplasia , Masculino , Músculo Liso Vascular/citologia , NF-kappa B/fisiologia , Coelhos , Ratos , Fator de Necrose Tumoral alfa/biossíntese , Túnica Íntima/patologia , Veias/transplante
20.
Arterioscler Thromb Vasc Biol ; 24(12): 2277-83, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15486311

RESUMO

OBJECTIVE: Vein graft remodeling and neointimal hyperplasia involve inflammation, graft-intrinsic cells, and recruitment of vascular progenitor cells. We sought to examine if the inflammatory cytokine tumor necrosis factor (TNF) affects vein graft remodeling via its p55 TNF receptor-1 (p55). METHODS AND RESULTS: Inferior vena cava-to-carotid artery interposition grafting was performed between p55-/- and congenic (C57Bl/6) wild-type (WT) mice. Immunofluorescence revealed TNF in early (2-week) vein grafts. Six weeks postoperatively, luminal and medial areas were indistinguishable among all vein graft groups. However, neointimal area was reduced in p55-/- grafts: by 40% in p55-/- grafts placed in p55-/- recipients, and by 21% in p55-/- grafts placed in WT recipients, compared with WT grafts in WT recipients (P<0.05). In 2-week-old vein grafts, p55 deficiency reduced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 expression by 50% to 60%, and increased the extent of graft endothelialization. In vitro, TNF promoted chemokine expression and [3H]thymidine incorporation in vascular smooth muscle cells (SMCs) from WT, but not from p55-/- mice. However, responses of WT and p55-/- SMCs to other growth factors were equivalent. CONCLUSIONS: Signaling via p55, in vein graft-intrinsic cells, contributes to the pathogenesis of vein graft neointimal hyperplasia.


Assuntos
Hiperplasia/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Túnica Íntima/patologia , Veia Cava Inferior/transplante , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Artéria Carótida Primitiva/cirurgia , Moléculas de Adesão Celular/biossíntese , Linhagem Celular , Quimiocina CCL2/biossíntese , Quimiocinas/biossíntese , Ativação Enzimática/fisiologia , Hiperplasia/enzimologia , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/enzimologia , Neovascularização Patológica/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Túnica Íntima/química , Túnica Íntima/enzimologia , Túnica Íntima/metabolismo , Veias/enzimologia , Veias/metabolismo , Veias/transplante , Veia Cava Inferior/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA