Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 19(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569524

RESUMO

The urgency for energy efficient, responsive architectures has propelled smart material development to the forefront of scientific and architectural research. This paper explores biological, physical, and morphological factors influencing the programming of a novel microbial-based smart hybrid material which is responsive to changes in environmental humidity. Hygromorphs respond passively, without energy input, by expanding in high humidity and contracting in low humidity.Bacillus subtilisdevelops environmentally robust, hygromorphic spores which may be harnessed within a bilayer to generate a deflection response with potential for programmability. The bacterial spore-based hygromorph biocomposites (HBCs) were developed and aggregated to enable them to open and close apertures and demonstrate programmable responses to changes in environmental humidity. This study spans many fields including microbiology, materials science, design, fabrication and architectural technology, working at multiple scales from single cells to 'bench-top' prototype.Exploration of biological factors at cellular and ultracellular levels enabled optimisation of growth and sporulation conditions to biologically preprogramme optimum spore hygromorphic response and yield. Material explorations revealed physical factors influencing biomechanics, preprogramming shape and response complexity through fabrication and inert substrate interactions, to produce a palette of HBCs. Morphological aggregation was designed to harness and scale-up the HBC palette into programmable humidity responsive aperture openings. This culminated in pilot performance testing of a humidity-responsive ventilation panel fabricated with aggregatedBacillusHBCs as a bench-top prototype and suggests potential for this novel biotechnology to be further developed.


Assuntos
Esporos Bacterianos
2.
Front Bioeng Biotechnol ; 11: 1229693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520299

RESUMO

This paper presents significant advances in mycelium biofabrication using permanent knitted textile formwork and a new substrate formulation to dramatically improve the mechanical properties of mycelium-textile biocomposites suitable for large-scale components for use in construction. The paper outlines the biofabrication process, detailing the composition of mycocrete, a viscous mycelium substrate developed for use with permanent knitted formwork, and the injection process required to regulate the filling of slender tubes of fabric with mycocrete. The use of a permanent integrated knitted formwork shows promise as a composite system for use with mycelium to improve mechanical performance and enable complex shapes to be fabricated for lightweight construction. Results of mechanical testing show dramatic improvements in tensile, compressive and flexural strength and stiffness compared to conventional mycelium composites. The testing demonstrates the importance of both the mycocrete paste recipe and the knitted textile formwork. In addition, the paper highlights the advantages of the proposed biofabrication system with reference to the BioKnit prototype: a 1.8 m high freestanding arched dome composed of very slender biohybrid knit-mycelium tubes. This prototype demonstrates the opportunity to utilize the potential for lightweight construction and complex form offered by a textile formwork with low environmental impact mycelium biomaterials. The combination of textiles and mycelium present a compelling new class of textile biohybrid composite materials for new applications within the construction sector.

3.
PLoS One ; 13(4): e0195484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649240

RESUMO

We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress.


Assuntos
Biofilmes , Hidrodinâmica , Modelos Estatísticos , Resistência ao Cisalhamento , Estresse Mecânico , Teorema de Bayes , Distribuição de Poisson , Águas Residuárias/microbiologia
4.
Front Microbiol ; 8: 1865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021783

RESUMO

The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

5.
PLoS One ; 12(8): e0181965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771505

RESUMO

Accurate predictive modelling of the growth of microbial communities requires the credible representation of the interactions of biological, chemical and mechanical processes. However, although biological and chemical processes are represented in a number of Individual-based Models (IbMs) the interaction of growth and mechanics is limited. Conversely, there are mechanically sophisticated IbMs with only elementary biology and chemistry. This study focuses on addressing these limitations by developing a flexible IbM that can robustly combine the biological, chemical and physical processes that dictate the emergent properties of a wide range of bacterial communities. This IbM is developed by creating a microbiological adaptation of the open source Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). This innovation should provide the basis for "bottom up" prediction of the emergent behaviour of entire microbial systems. In the model presented here, bacterial growth, division, decay, mechanical contact among bacterial cells, and adhesion between the bacteria and extracellular polymeric substances are incorporated. In addition, fluid-bacteria interaction is implemented to simulate biofilm deformation and erosion. The model predicts that the surface morphology of biofilms becomes smoother with increased nutrient concentration, which agrees well with previous literature. In addition, the results show that increased shear rate results in smoother and more compact biofilms. The model can also predict shear rate dependent biofilm deformation, erosion, streamer formation and breakup.


Assuntos
Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/microbiologia , Biofilmes/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Modelos Biológicos , Aderência Bacteriana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA