Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 148: 106-116, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667237

RESUMO

Several studies have addressed the potential biorefinery, through small-scale pyrolysis, of coffee silverskin (CSS), grape pomace (GP) and olive mill waste (OMW), which are respectively the main solid residues from coffee roasting, wine making and olive oil production processes. However, increasing the scale of reactor to bring these studies to an industrial level may affect the properties, and hence applications, of the resulting products. The aim of this study is therefore to perform pilot scale experiments to compare and verify the results of analytical study (TGA) and bench scale reactor runs, in order to understand the fundamental differences and create correlations between pyrolysis runs at different scales. To this end, pyrolysis liquids and biochars from the slow pyrolysis of CSS, GP and OMW, performed using different scale auger reactors (15 kg/h and 0.3 kg/h), have been analysed (TGA, pH, density, proximate and ultimate analyses, HHV, FTIR, GCMS) and compared. The results showed no major differences in biochars when the temperature and the solid residence time were fixed. However, regarding pyrolysis liquids, compounds from the lab reactor were more degraded than pilot plant ones, due to, in this case, the vapour residence time was longer. Regarding the properties of the pyrolysis products, GP 400 °C biochars showed the best properties for combustion; CSS biochars were especially rich in nitrogen, and 400 °C GP and OMW pyrolysis liquids showed the highest number of phenolics. Hence, this study is considered a first step towards industrial scale CSS, GP and OMW pyrolysis-based biorefinery.


Assuntos
Olea , Vitis , Carvão Vegetal/química , Café , Pirólise
2.
Environ Sci Pollut Res Int ; 28(8): 10155-10166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33169282

RESUMO

Metal mining and smelting activities can introduce a substantial amount of potentially toxic elements (PTE) into the environment that can persist for an extended period. That can limit the productivity of the land and creates dangerous effects on ecosystem services. The effectiveness of wheat straw biochar to immobilize Cd in contaminated soil due to metal smelting activities was investigated in this study. The biochar carbon stability and long-term provisioning of services depend on the biochar production conditions, nature of the feedstock, and the biotic and abiotic environmental conditions in which the biochar is being used. Within this context, three types of wheat straw biochar were produced using a screw reactor at 400 °C, 500 °C, and 600 °C and tested in a laboratory incubation study. Soil was amended with 2 wt% of biochar. Both fresh and aged forms of biochar were used. Biochars produced at lower temperatures were characterized by lower pH, a lower amount of stable C, and higher amounts of acidic surface functional groups than the freshly produced biochars at higher production temperatures. At the end of the 6 months of incubation time, compared to the soil only treatment, fresh and aged forms of wheat straw biochar produced at 600 °C reduced the Cd concentration in soil pore water by 22% and 15%, respectively. Our results showed that the aged forms of biochar produced at higher production temperatures (500 °C and 600 °C) immobilized Cd more efficiently than the aged forms of lower temperature biochar (400 °C). The findings of this study provide insights to choose the production parameters in wheat straw biochar production while considering their aging effect to achieve successful stabilization of Cd in contaminated soils.


Assuntos
Poluentes do Solo , Triticum , Cádmio/análise , Carvão Vegetal , Ecossistema , Solo , Poluentes do Solo/análise
3.
Waste Manag ; 70: 81-90, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28927872

RESUMO

Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel.


Assuntos
Temperatura Alta , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos
4.
Bioresour Technol ; 100(24): 6428-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19660936

RESUMO

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R(2) values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.


Assuntos
Fontes de Energia Bioelétrica , Poaceae/química , Álcalis/análise , Carbono/análise , Fertilizantes , Análise dos Mínimos Quadrados , Nitrogênio/análise , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Bioresour Technol ; 100(3): 1252-61, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18796351

RESUMO

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.


Assuntos
Algoritmos , Ácidos Cumáricos/análise , Interpretação Estatística de Dados , Lignina/análise , Poaceae/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise dos Mínimos Quadrados , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA