Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675026

RESUMO

The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.


Assuntos
Condrócitos , Curcumina , Proteínas Matrilinas , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Matrilinas/metabolismo , Proteólise
2.
Sci Rep ; 12(1): 13884, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974042

RESUMO

Cysteine rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER) resident chaperone protein with calcium binding properties. CRELD2 is an ER-stress regulated gene that has been implicated in the pathogenesis of skeletal dysplasias and has been shown to play an important role in the differentiation of chondrocytes and osteoblasts. Despite CRELD2 having an established role in skeletal development and bone formation, its role in osteoclasts is currently unknown. Here we show for the first time that CRELD2 plays a novel role in trafficking transforming growth factor beta 1 (TGF-ß1), which is linked to an upregulation in the expression of Nfat2, the master regulator of osteoclast differentiation in early osteoclastogenesis. Despite this finding, we show that overexpressing CRELD2 impaired osteoclast differentiation due to a reduction in the activity of the calcium-dependant phosphatase, calcineurin. This in turn led to a subsequent block in the dephosphorylation of nuclear factor of activated T cells 1 (NFATc1), preventing its nuclear localisation and activation as a pro-osteoclastogenic transcription factor. Our exciting results show that the overexpression of Creld2 in osteoclasts impaired calcium release from the ER which is essential for activating calcineurin and promoting osteoclastogenesis. Therefore, our data proposes a novel inhibitory role for this calcium-binding ER-resident chaperone in modulating calcium flux during osteoclast differentiation which has important implications in our understanding of bone remodelling and the pathogenesis of skeletal diseases.


Assuntos
Cálcio , Osteoclastos , Calcineurina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Retículo Endoplasmático/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo
3.
Sci Rep ; 11(1): 10452, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001919

RESUMO

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.


Assuntos
Excitabilidade Cortical/genética , Hipocampo/fisiologia , MicroRNAs/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Receptores Imunológicos/genética , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neocórtex/fisiologia , RNA-Seq , Transdução de Sinais/genética
4.
Dev Dyn ; 250(3): 345-359, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32633442

RESUMO

For the vast majority of the 6000 known rare disease the pathogenic mechanisms are poorly defined and there is little treatment, leading to poor quality of life and high healthcare costs. Genetic skeletal diseases (skeletal dysplasias) are archetypal examples of rare diseases that are chronically debilitating, often life-threatening and for which no treatments are currently available. There are more than 450 unique phenotypes that, although individually rare, have an overall prevalence of at least 1 per 4000 children. Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous disorder characterized by disproportionate short stature, joint pain, and early-onset osteoarthritis. MED is caused by mutations in the genes encoding important cartilage extracellular matrix proteins, enzymes, and transporter proteins. Recently, through the use of various cell and mouse models, disease mechanisms underlying this diverse phenotypic spectrum are starting to be elucidated. For example, ER stress induced as a consequence of retained misfolded mutant proteins has emerged as a unifying disease mechanisms for several forms of MED in particular and skeletal dysplasia in general. Moreover, targeting ER stress through drug repurposing has become an attractive therapeutic avenue.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteínas da Matriz Extracelular , Mutação , Osteocondrodisplasias , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Qualidade de Vida
5.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32399188

RESUMO

Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.


Assuntos
Condrócitos/patologia , Estresse do Retículo Endoplasmático , Animais , Células Cultivadas , Lâmina de Crescimento/patologia , Osteoartrite/patologia
6.
J Bone Miner Res ; 35(8): 1452-1469, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181934

RESUMO

Cysteine-rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER)-resident chaperone highly activated under ER stress in conditions such as chondrodysplasias; however, its role in healthy skeletal development is unknown. We show for the first time that cartilage-specific deletion of Creld2 results in disrupted endochondral ossification and short limbed dwarfism, whereas deletion of Creld2 in bone results in osteopenia, with a low bone density and altered trabecular architecture. Our study provides the first evidence that CRELD2 promotes the differentiation and maturation of skeletal cells by modulating noncanonical WNT4 signaling regulated by p38 MAPK. Furthermore, we show that CRELD2 is a novel chaperone for the receptor low-density lipoprotein receptor-related protein 1 (LRP1), promoting its transport to the cell surface, and that LRP1 directly regulates WNT4 expression in chondrocytes through TGF-ß1 signaling. Therefore, our data provide a novel link between an ER-resident chaperone and the essential WNT signaling pathways active during skeletal differentiation that could be applicable in other WNT-responsive tissues. © 2020 American Society for Bone and Mineral Research. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..


Assuntos
Moléculas de Adesão Celular , Proteínas da Matriz Extracelular , Diferenciação Celular , Condrócitos , Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Via de Sinalização Wnt
7.
Arthritis Res Ther ; 21(1): 206, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511053

RESUMO

BACKGROUND: Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA. METHODS: OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter-driven expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice. RESULTS: In situ hybridisation demonstrated a correlation between the upregulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity. CONCLUSION: Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA, but once established, ER stress plays no significant role in disease progression.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Osteoartrite/metabolismo , RNA/genética , Animais , Apoptose , Biomarcadores/metabolismo , Cartilagem Articular , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Osteoartrite/genética , Osteoartrite/patologia
8.
PLoS Genet ; 15(7): e1008215, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260448

RESUMO

The unfolded protein response (UPR) is a conserved cellular response to the accumulation of proteinaceous material in endoplasmic reticulum (ER), active both in health and disease to alleviate cellular stress and improve protein folding. Multiple epiphyseal dysplasia (EDM5) is a genetic skeletal condition and a classic example of an intracellular protein aggregation disease, whereby mutant matrilin-3 forms large insoluble aggregates in the ER lumen, resulting in a specific 'disease signature' of increased expression of chaperones and foldases, and alternative splicing of the UPR effector XBP1. Matrilin-3 is expressed exclusively by chondrocytes thereby making EDM5 a perfect model system to study the role of protein aggregation in disease. In order to dissect the role of XBP1 signalling in aggregation-related conditions we crossed a p.V194D Matn3 knock-in mouse model of EDM5 with a mouse line carrying a cartilage specific deletion of XBP1 and analysed the resulting phenotype. Interestingly, the growth of mice carrying the Matn3 p.V194D mutation compounded with the cartilage specific deletion of XBP1 was severely retarded. Further phenotyping revealed increased intracellular retention of amyloid-like aggregates of mutant matrilin-3 coupled with dramatically decreased cell proliferation and increased apoptosis, suggesting a role of XBP1 signalling in protein accumulation and/or degradation. Transcriptomic analysis of chondrocytes extracted from wild type, EDM5, Xbp1-null and compound mutant lines revealed that the alternative splicing of Xbp1 is crucial in modulating levels of protein aggregation. Moreover, through detailed transcriptomic comparison with a model of metaphyseal chondrodysplasia type Schmid (MCDS), an UPR-related skeletal condition in which XBP1 was removed without overt consequences, we show for the first time that the differentiation-state of cells within the cartilage growth plate influences the UPR resulting from retention of a misfolded mutant protein and postulate that modulation of XBP1 signalling pathway presents a therapeutic target for aggregation related conditions in cells undergoing proliferation.


Assuntos
Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Proteína 1 de Ligação a X-Box/genética , Processamento Alternativo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Humanos , Proteínas Matrilinas/química , Proteínas Matrilinas/genética , Camundongos , Osteocondrodisplasias/metabolismo , Agregados Proteicos , Transdução de Sinais , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo
9.
J Clin Invest ; 127(10): 3861-3865, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28920921

RESUMO

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.


Assuntos
Carbamazepina/farmacologia , Condrócitos/metabolismo , Colágeno Tipo X/biossíntese , Nanismo/metabolismo , Estresse do Retículo Endoplasmático , Mutação , Proteólise , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Condrócitos/patologia , Colágeno Tipo X/genética , Nanismo/genética , Nanismo/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos
10.
Orphanet J Rare Dis ; 11(1): 86, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27353333

RESUMO

The large chondroitin sulphated proteoglycan aggrecan (ACAN) is the most abundant non-collagenous protein in cartilage and is essential for its structure and function. Mutations in ACAN result in a broad phenotypic spectrum of non-lethal skeletal dysplasias including spondyloepimetaphyseal dysplasia, spondyloepiphyseal dysplasia, familial osteochondritis dissecans and various undefined short stature syndromes associated with accelerated bone maturation. However, very little is currently known about the disease pathways that underlie these aggrecanopathies, although they are likely to be a combination of haploinsufficiency and dominant-negative (neomorphic) mechanisms. This review discusses the known human and animal aggrecanopathies in the context of clinical presentation and potential disease mechanisms.


Assuntos
Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Agrecanas/metabolismo , Cartilagem/metabolismo , Cartilagem/patologia , Humanos , Mutação/genética , Linhagem
11.
Expert Opin Orphan Drugs ; 3(10): 1137-1154, 2015 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-26635999

RESUMO

Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers.

12.
Int J Mol Med ; 35(6): 1483-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25824717

RESUMO

Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. Qualitative defects in cartilage structural proteins result in a broad spectrum of both recessive and dominant GSDs. This review focused on a disease spectrum resulting from mutations in the non-collagenous glycoproteins, cartilage oligomeric matrix protein (COMP) and matrilin-3, which together cause a continuum of phenotypes that are amongst the most common autosomal dominant GSDs. Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) comprise a disease spectrum characterised by varying degrees of disproportionate short stature, joint pain and stiffness and early-onset osteoarthritis. Over the past decade, the generation and deep phenotyping of a range of genetic mouse models of the PSACH and MED disease spectrum has allowed the disease mechanisms to be characterised in detail. Moreover, the generation of novel phenocopies to model specific disease mechanisms has confirmed the importance of endoplasmic reticulum (ER) stress and reduced chondrocyte proliferation as key modulators of growth plate dysplasia and reduced bone growth. Finally, new insight into related musculoskeletal complications (such as myopathy and tendinopathy) has also been gained through the in-depth analysis of targeted mouse models of the PSACH-MED disease spectrum.


Assuntos
Acondroplasia , Proteína de Matriz Oligomérica de Cartilagem , Modelos Animais de Doenças , Mutação , Osteocondrodisplasias , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patologia , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Humanos , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Camundongos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia
13.
PLoS One ; 10(2): e0117016, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693198

RESUMO

Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). The majority of these diseases feature classical endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog) was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog) in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.


Assuntos
Desenvolvimento Ósseo , Condrócitos/citologia , Estresse do Retículo Endoplasmático , Lâmina de Crescimento/citologia , Animais , Proliferação de Células , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo II/genética , Nanismo/metabolismo , Nanismo/patologia , Matriz Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Regiões Promotoras Genéticas/genética , Tireoglobulina/genética , Resposta a Proteínas não Dobradas
14.
Eur J Hum Genet ; 22(11): 1278-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24595329

RESUMO

Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) are chondrodysplasias resulting in short-limbed dwarfism, joint pain and stiffness and early onset osteoarthritis. All PSACH, and the largest proportion of MED, result from mutations in cartilage oligomeric matrix protein (COMP). The first mutations in COMP were identified in 1995 in patients with both PSACH and MED and subsequently there has been over 30 publications describing COMP mutations in at least 250 PSACH-MED patients. However, despite these discoveries, a methodical analysis of the relationship between COMP mutations and phenotypes has not been undertaken. In particular, there has, to date, been little correlation between the type and location of a COMP mutation and the resulting phenotype of PSACH or MED. To determine if genotype to phenotype correlations could be derived for COMP, we collated 300 COMP mutations, including 25 recently identified novel mutations. The results of this analysis demonstrate that mutations in specific residues and/or regions of the type III repeats of COMP are significantly associated with either PSACH or MED. This newly derived genotype to phenotype correlation may aid in determining the prognosis of PSACH and MED, including the prediction of disease severity, and in the long term guide genetic counselling and contribute to the clinical management of patients with these diseases.


Assuntos
Acondroplasia/genética , Proteína de Matriz Oligomérica de Cartilagem/genética , Estudos de Associação Genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Acondroplasia/diagnóstico , Sequência de Aminoácidos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Genótipo , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Prognóstico
15.
PLoS One ; 9(2): e85145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558358

RESUMO

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechanisms remain largely unknown. T585M COMP mutant mice are a model of moderate PSACH and demonstrate a mild ER stress response. Although mutant COMP is not retained in significant quantities within the ER of chondrocytes, both BiP and the pro-apoptotic ER stress-related transcription factor CHOP are mildly elevated, whilst bcl-2 levels are decreased, resulting in increased and spatially dysregulated chondrocyte apoptosis. To determine whether the abnormal chondrocyte apoptosis observed in the growth plate of mutant mice is CHOP-mediated, we bred T585M COMP mutant mice with CHOP-null mice to homozygosity, and analysed the resulting phenotype. Although abnormal apoptosis was alleviated in the resting zone following CHOP deletion, the mutant growth plates were generally more disorganised. Furthermore, the bone lengths of COMP mutant CHOP null mice were significantly shorter at 9 weeks of age when compared to the COMP mutant mice, including a significant difference in the skull length. Overall, these data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.


Assuntos
Acondroplasia/genética , Acondroplasia/patologia , Apoptose , Cartilagem/patologia , Condrócitos/citologia , Fator de Transcrição CHOP/genética , Animais , Osso e Ossos/patologia , Proliferação de Células , Modelos Animais de Doenças , Lâmina de Crescimento/metabolismo , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Fenótipo , Processo Xifoide/patologia
16.
PLoS One ; 8(11): e82412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312420

RESUMO

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.


Assuntos
Doenças Ósseas/genética , Proteína de Matriz Oligomérica de Cartilagem/genética , Modelos Animais de Doenças , Doenças Musculares/genética , Mutação , Animais , Doenças Ósseas/complicações , Proteínas Matrilinas/genética , Camundongos , Camundongos Transgênicos , Força Muscular , Doenças Musculares/complicações
17.
Dis Model Mech ; 6(6): 1414-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24046357

RESUMO

Disease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM) alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER) of resting and proliferating chondrocytes. Previous studies on this mutant protein have shown that it induces intracellular aggregates and causes cell stress and death in the thyroid gland. The expression and retention of this exogenous mutant protein in resting and proliferating chondrocytes resulted in a chronic cell stress response, growth plate dysplasia and reduced bone growth, without inducing any alterations to the architecture and organization of the cartilage ECM. More significantly, the decreased bone growth seemed to be the direct result of reduced chondrocyte proliferation in the proliferative zone of growth plates in transgenic mice, without transcriptional activation of a classical unfolded protein response (UPR) or apoptosis. Overall, these data show that mutant protein retention in the ER of resting and proliferative zone chondrocytes is sufficient to cause disrupted bone growth. The specific disease pathways triggered by mutant protein retention do not necessarily involve a prototypic UPR, but all pathways impact upon chondrocyte proliferation in the cartilage growth plate.


Assuntos
Desenvolvimento Ósseo , Proliferação de Células , Condrócitos/patologia , Retículo Endoplasmático/metabolismo , Lâmina de Crescimento/patologia , Animais , Apoptose , Camundongos , Camundongos Transgênicos , Transcrição Gênica
18.
Hum Mol Genet ; 22(25): 5262-75, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23956175

RESUMO

Mutant matrilin-3 (V194D) forms non-native disulphide bonded aggregates in the rER of chondrocytes from cell and mouse models of multiple epiphyseal dysplasia (MED). Intracellular retention of mutant matrilin-3 causes endoplasmic reticulum (ER) stress and induces an unfolded protein response (UPR) including the upregulation of two genes recently implicated in ER stress: Armet and Creld2. Nothing is known about the role of Armet and Creld2 in human genetic diseases. In this study, we used a variety of cell and mouse models of chondrodysplasia to determine the genotype-specific expression profiles of Armet and Creld2. We also studied their interactions with various mutant proteins and investigated their potential roles as protein disulphide isomerases (PDIs). Armet and Creld2 were up-regulated in cell and/or mouse models of chondrodysplasias caused by mutations in Matn3 and Col10a1, but not Comp. Intriguingly, both Armet and Creld2 were also secreted into the ECM of these disease models following ER stress. Armet and Creld2 interacted with mutant matrilin-3, but not with COMP, thereby validating the genotype-specific expression. Substrate-trapping experiments confirmed Creld2 processed PDI-like activity, thus identifying a putative functional role. Finally, alanine substitution of the two terminal cysteine residues from the A-domain of V194D matrilin-3 prevented aggregation, promoted mutant protein secretion and reduced the levels of Armet and Creld2 in a cell culture model. We demonstrate that Armet and Creld2 are genotype-specific ER stress response proteins with substrate specificities, and that aggregation of mutant matrilin-3 is a key disease trigger in MED that could be exploited as a potential therapeutic target.


Assuntos
Moléculas de Adesão Celular/genética , Estresse do Retículo Endoplasmático/genética , Proteínas da Matriz Extracelular/genética , Fatores de Crescimento Neural/genética , Osteocondrodisplasias/genética , Animais , Apoptose/genética , Condrócitos/metabolismo , Colágeno Tipo X/genética , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Matrilinas/genética , Camundongos , Osteocondrodisplasias/patologia
19.
Biol Open ; 2(8): 802-11, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23951406

RESUMO

Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM) in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.

20.
J Histochem Cytochem ; 60(10): 734-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22859705

RESUMO

Mutations causing metaphyseal chondrodysplasia type Schmid (MCDS) (e.g., Col10a1p.N617K) induce the pathology by a mechanism involving increased endoplasmic reticulum (ER) stress triggering an unfolded protein response (UPR) in hypertrophic chondrocytes (Rajpar et al. 2009). Here we correlate the expression of mutant protein with the onset of the UPR and disease pathology (hypertrophic zone [HZ] expansion) in MCDS and ColXTg(cog) mouse lines from E14.5 to E17.5. Embryos homozygous for the Col10a1p.N617K mutation displayed a delayed secretion of mutant collagen X accompanied by a UPR at E14.5, delayed ossification of the primary center at E15.5, and an expanded HZ at E17.5. Heterozygote embryos expressed mutant collagen X from E14.5 but exhibited no evidence of a UPR or an HZ expansion until after E17.5. Embryos positive for the ER stress-inducing ColXTg(cog) allele expressed Tg(cog) at E14.5, but the onset of the UPR was not apparent until E15.5 in homozygous and E17.5 in hemizygous embryos. Only homozygous embryos exhibited an HZ expansion at E17.5. The differential onset of the UPR and pathology, dependent on mutation type and gene dosage, indicates that hypertrophic chondrocytes have a latent capacity to deal with ER stress, which must be exceeded to trigger the UPR and HZ expansion.


Assuntos
Condrócitos/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Tamanho Celular , Condrócitos/citologia , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Embrião de Mamíferos , Dosagem de Genes , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/metabolismo , Hemizigoto , Homozigoto , Camundongos , Camundongos Mutantes , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Osteoclastos/fisiologia , Osteogênese , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA