Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sep Sci Plus ; 1(11): 753-758, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34316536

RESUMO

Column preparation in capillary chromatography commonly relies upon the generation of on-column porous frits. Here, we report a simple, robust and low-cost approach for preparing polymer frits on-column, in a rapid and spatially controlled manner using thermal free-radical initiated polymerization. In this approach, a simple, temperature-controlled heating apparatus is positioned adjacent to a 100 µm i.d. fused-silica capillary for a defined duration. Frits were synthesized in 3-(trimethoxysilyl)propyl methacrylate modified capillaries using a monomer solution of 2,2-azobisisobutyronitrile, glycidyl methacrylate, ethylene glycol dimethacrylate, and decanol. Frit length and stability were investigated as a function of polymerization time and temperature. Frit length was easily controlled via a combination of polymerization time and temperature and position was readily controlled using a simple mechanical placement jig. Thermal initiated frits were stable throughout column packing and did not require removal of the capillary polyimide coating. The thermal initiation approach offers higher throughput, with polymerization times of < 2 min compared to ≥ 30 min for UV-initiated polymerization and significantly reduces the cost, enabling broader access to on-column frit technology for a variety of capillary separation applications.

2.
ACS Biomater Sci Eng ; 1(10): 955-963, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26925461

RESUMO

Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability. The commercially available methacrylate monomers provide a simple, low cost, and broadly accessible approach for preparing highly stabilized BLMs useful for ion channel analytical platforms. When prepared on silane-modified glass microapertures, the resulting polymer scaffold-stabilized (PSS)-BLMs exhibited significantly improved lifetimes of 23 ± 9 to 40 ± 14 h and > 10-fold increase in mechanical stability, with breakdown potentials > 2000 mV attainable, depending on surface modification and polymer cross-link density. Additionally, the polymer scaffold exerted minimal perturbations to membrane electrical integrity as indicated by mean conductance measurements. When gramicidin A and α-hemolysin were reconstituted into PSS-BLMs, the ion channels retained function comparable to conventional BLMs. This approach is a key advance in the formation of stabilized BLMs and should be amenable to a wide range of receptor and ion channel functionalized platforms.

3.
Langmuir ; 30(50): 15351-5, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25425190

RESUMO

The sensitivity and selectivity of ion channels provide an appealing opportunity for sensor development. Here, we describe ion channel probes (ICPs), which consist of multiple ion channels reconstituted into lipid bilayers suspended across the opening of perflourinated glass micropipets. When incorporated with a scanning ion conductance microscope (SICM), ICPs displayed a distance-dependent current response that depended on the number of ion channels in the membrane. With distance-dependent current as feedback, probes were translated laterally, to demonstrate the possibility of imaging with ICPs. The ICP platform yields several potential advantages for SICM that will enable exciting opportunities for incorporation of chemical information into imaging and for high-resolution imaging.


Assuntos
Condutividade Elétrica , Canais Iônicos/metabolismo , Microscopia de Varredura por Sonda/métodos , Técnicas Biossensoriais , Retroalimentação , Canais Iônicos/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica
4.
Electrophoresis ; 35(8): 1099-105, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24459085

RESUMO

Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.


Assuntos
Eletroforese Capilar/instrumentação , Fosfolipídeos/química , Animais , Bovinos , Galinhas , Quimotripsinogênio/isolamento & purificação , Cavalos , Muramidase/isolamento & purificação , Mioglobina/isolamento & purificação , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 5(22): 11918-26, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24187929

RESUMO

The development of next-generation transmembrane protein-based biosensors relies heavily on the use of black lipid membranes (BLMs); however, electrical, mechanical, and temporal instability of BLMs poses a limiting challenge to biosensor development. In this work, micrometer-sized glass apertures were modified with silanes of different chain length and fluorine composition, including 3-cyanopropyldimethychlorosilane (CPDCS), ethyldimethylchlorosilane (EDCS), n-octyldimethylchlorosilane (ODCS), (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)dimethylchlorosilane (PFDCS), or (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (PFDDCS), to explore the effect of substrate surface energy on BLM stability. Low energy silane-modified surfaces promoted enhanced lipid-substrate interactions that facilitate the formation of low-leakage, stable BLMs. The surface energies of silane-modified substrates were 30 ± 3, 16 ± 1, 14 ± 2, 11 ± 1, and 7.1 ± 2 mJ m(-2) for CDCS, EDCS, ODCS, PFDCS, and PFDDCS, respectively. Decreased surface energy directly correlated to improved electrical, mechanical, and temporal BLM stability. Amphiphobic perfluorinated surface modifiers yielded superior performance compared to traditional hydrocarbon modifiers in terms of stability and BLM formation, with only marginal effects on BLM membrane permeability. Leakage currents obtained for PFDCS and PFDDCS BLMs were elevated only 10-30%, though PFDDCS modification yielded >5-fold increase in electrical stability as indicated by breakdown voltage (> 2000 mV vs 418 ± 73 mV), and >25-fold increase in mechanical stability as indicated by air-water transfers (> 50 vs 2 ± 0.2) when compared to previously reported CPDCS modification. Importantly, the dramatically improved membrane stabilities were achieved with no deleterious effects on reconstituted ion channel function, as evidenced by α-hemolysin activity. Thus, this approach provides a simple, low cost, and broadly applicable alternative for BLM stabilization and should contribute significantly toward the development of next-generation ion-channel-functionalized biosensors.


Assuntos
Proteínas Hemolisinas/química , Lipídeos/química , Membranas Artificiais , Tensão Superficial
6.
Anal Chem ; 85(19): 9078-86, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23987300

RESUMO

Robust and high-density biosensors incorporating suspended lipid membranes require microfabricated apertures that can be readily integrated into complex analysis systems. Apertures with well-defined, three-dimensional geometries enable the formation of suspended lipid membranes and facilitate reduced aperture size compared to vertical-walled apertures. Unfortunately, existing methods of producing apertures with well-defined, three-dimensional geometries are based on complex and expensive fabrication procedures, some of which yield apertures in excessively fragile thin-film materials. Here, we describe a microfabrication method utilizing incline and rotate lithography that achieves sloped-wall microapertures in SU-8 polymer substrates with precision control of the aperture diameter, substrate thickness, and wall angle. This approach is simple, is of low cost, and is readily scaled up to allow highly reproducible parallel fabrication. The effect of the incident angle of UV exposure and the size of photomask features on the aperture geometry were investigated, yielding aperture diameters as small as 7 µm and aperture wall angles ranging from 8° to 36° measured from the normal axis. Black lipid membranes were suspended across the apertures and showed normalized conductance values of 0.02-0.05 pS µm(-2) and breakdown voltages of 400-600 mV. The functionality of the resulting sloped-wall microapertures was validated via measurement of reconstituted α-hemolysin activity and the voltage-gated channel activity of alamethicin.


Assuntos
Compostos de Epóxi/análise , Lipídeos de Membrana/química , Microtecnologia , Polímeros/análise , Alameticina/farmacologia , Técnicas Biossensoriais/instrumentação , Fenômenos Químicos , Proteínas Hemolisinas/metabolismo , Microtecnologia/instrumentação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA