Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 927: 171914, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554956

RESUMO

Reindeer (Rangifer tarandus) pastoralism utilizes vast boreo-arctic taiga and tundra as grazing land. Highly fluctuating population sizes pose major challenges to the economy and livelihood of indigenous herder communities. In this study we investigated the effect of population fluctuations on core provisioning and regulating ecosystem services in two Sámi reindeer herding districts with contrasting fluctuation trends. We compared 50-year long time series on herd size, meat production, forage productivity, carbon footprint, and CO2-equivalence metrics for surface albedo change based on the radiative forcing concept. Our results show, for both districts, that the economic benefits from the provisioning services were higher than the costs from the regulating services. Still, there were major contrasts; the district with moderate and stable reindeer density gained nearly the double on provisioning services per unit area. The costs from increasing heat absorption due to reduction in surface albedo caused by replacement of high-reflective lichens with low-reflective woody plants, was 10.5 times higher per unit area in the district with large fluctuations. Overall, the net economic benefits per unit area were 237 % higher in the district with stable reindeer density. These results demonstrate that it is possible to minimize trade-offs between economic benefits from reindeer herding locally and global economic costs in terms of climate-regulating services by minimizing fluctuations in herds that are managed at sustainable densities.


Assuntos
Ecossistema , Rena , Animais , Criação de Animais Domésticos/métodos , Mudança Climática , Conservação dos Recursos Naturais/métodos , Regiões Árticas
3.
Geophys Res Lett ; 49(18): e2022GL100100, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36583013

RESUMO

Transpiration makes up the bulk of total evaporation in forested environments yet remains challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured (rRMSE = 20%; R 2 = 0.89). Irrespective of model type, optimal configurations were those making use of key plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand over soil moisture supply. Our findings have implications for more informed water resource management based on hydrological modeling and remote sensing.

4.
Sci Total Environ ; 807(Pt 3): 151044, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673068

RESUMO

Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO2 emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO2 removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO2 equivalents yr-1, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9-17% of the emissions of the Norwegian agricultural sector and to 0.8-1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.


Assuntos
Mudança Climática , Agricultura Florestal , Carvão Vegetal , Solo
5.
Glob Chang Biol ; 26(9): 5087-5105, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32559355

RESUMO

As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on lands in various states of natural transition to a forest dominated by deciduous broadleaved tree species. Given the aspiration to bring emissions on balance with removals in the latter half of the 21st century in effort to limit the global mean temperature rise to "well below" 2°C, the effectiveness of such a policy is unclear given relatively low spruce growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counteract the benefits of an enhanced forest CO2 sink in high-latitude regions. Here, we carry out a rigorous empirically based assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale spruce planting in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting tCDR, yet given low forest growth rates in the region, notable tCDR benefits from such projects would not be realized until the second half of the 21st century, with maximum benefits occurring even later around 2150. We estimate Norway's total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (±240) and 852 (±295) Mt CO2 -eq. at mean net present values of US$ 12 (±3) and US$ 13 (±2) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway's total current annual production-based (i.e., territorial) CO2 -eq. emissions.


Assuntos
Dióxido de Carbono , Florestas , Sequestro de Carbono , Noruega , Árvores
6.
Ecol Appl ; 26(6): 1868-1880, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755703

RESUMO

Surface albedo is an important physical property by which the land surface regulates climate. A wide and growing body of literature suggests that failing to account for surface albedo can result in suboptimal or even counterproductive climate-motivated policies of the land-based sectors. As such, albedo changes are increasingly included in climate impact assessments of forestry and other land sector projects through conversion of radiative forcings into carbon or carbon dioxide equivalents. However, the prevailing methodology does not sufficiently accommodate dynamic albedo changes on land or CO2 in the atmosphere. We present two new metrics designed to address these deficiencies, referring to them as the time-dependent emissions equivalent and the time-independent emissions equivalent of albedo changes. We demonstrate their application in various land management contexts and discuss their merits and uncertainties.


Assuntos
Atmosfera/química , Fenômenos Biofísicos , Clima , Conservação dos Recursos Naturais , Florestas , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Agricultura Florestal , Modelos Biológicos , Noruega , Fatores de Tempo , Árvores/classificação
8.
Glob Chang Biol ; 21(9): 3246-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25914206

RESUMO

By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.


Assuntos
Atmosfera , Clima , Conservação dos Recursos Naturais , Agricultura Florestal , Fenômenos Biofísicos , Mudança Climática , Modelos Teóricos
9.
Environ Sci Technol ; 49(6): 3291-303, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25719274

RESUMO

The regulation by vegetation of heat, momentum, and moisture exchanges between the land surface and the atmosphere is a major component in Earth's climate system. By altering surface biogeophysics, anthropogenic land use activities often perturb these exchanges and thereby directly affect climate. Although long recognized scientifically as being important, biogeophysical climate forcings from land use and land cover changes (LULCC) are rarely included in life cycle assessment (LCA). Here, I review climate metrics for characterizing biogeophysical climate forcings from LULCC, focusing mostly on those that do not require coupled land-atmosphere climate models to compute. I discuss their merits, highlight their pros and cons in terms of their compatibility with the LCA framework, outline near-term practical guidelines and solutions for their integration, and point to areas of longer term research needs in both the climate science and LCA research communities.


Assuntos
Clima , Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Atmosfera , Biofísica , Florestas , Poaceae/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
10.
Glob Chang Biol ; 20(2): 607-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24277242

RESUMO

Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes ­ despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive ­ and at best ­ suboptimal if boreal forests are to be used as a tool to mitigate global warming.


Assuntos
Mudança Climática , Agricultura Florestal/métodos , Agricultura Florestal/economia , Modelos Biológicos , Modelos Teóricos , Noruega , Estações do Ano , Temperatura
11.
Environ Sci Technol ; 46(22): 12726-34, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23146092

RESUMO

Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Aquecimento Global/prevenção & controle , Luz Solar , Biomassa , Ciclo do Carbono , Dióxido de Carbono/química , Mudança Climática , Alemanha , Calefação
12.
Environ Sci Technol ; 45(17): 7570-80, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797227

RESUMO

Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.


Assuntos
Biocombustíveis , Clima , Luz , Árvores , Carbono/química , Carbono/metabolismo , Mudança Climática , Modelos Teóricos , Noruega
13.
Environ Sci Technol ; 44(7): 2261-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20163088

RESUMO

Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.


Assuntos
Biocombustíveis/estatística & dados numéricos , Meios de Transporte/estatística & dados numéricos , Biocombustíveis/análise , Biocombustíveis/provisão & distribuição , Biomassa , Conservação de Recursos Energéticos/estatística & dados numéricos , Conservação de Recursos Energéticos/tendências , Europa (Continente) , Agricultura Florestal , Combustíveis Fósseis/análise , Combustíveis Fósseis/estatística & dados numéricos , Combustíveis Fósseis/provisão & distribuição , Aquecimento Global , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA