Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(5): 3285-3300, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855666

RESUMO

We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.

2.
Opt Express ; 32(4): 6704, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439369

RESUMO

The authors present an erratum to update the Acknowledgements section in their published article, ["Fabrication and characterization of a two-dimensional individually addressable electrowetting microlens array," Opt. Express31, 30550 (2023)10.1364/OE.497992].

3.
Chem Mater ; 36(3): 1362-1374, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370278

RESUMO

Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure-performance relationships, and membrane fabrication.

4.
Opt Express ; 31(19): 30550-30561, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710595

RESUMO

We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from -1.7 mm to -∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering.

5.
Opt Express ; 31(10): 16709-16718, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157744

RESUMO

Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.

6.
Appl Phys Lett ; 122(20): 201106, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37214761

RESUMO

Electrowetting-based adaptive optics are of great interest for applications ranging from confocal microscopy to LIDAR, but the impact of low-frequency mechanical vibration on these devices remains to be studied. We present a simple theoretical model for predicting the resonance modes induced on the liquid interface in conjunction with a numerical simulation. We experimentally confirm the resonance frequencies by contact angle modulation. They are found to be in excellent agreement with the roots of the zero-order Bessel functions of the first kind. Next, we experimentally verify that external axial vibration of an electrowetting lens filled with density mismatched liquids (Δρ = 250 kg/m3) will exhibit observable Bessel modes on the liquid-liquid interface. An electrowetting lens filled with density matched liquids (Δρ = 4 kg/m3) is robust to external axial vibration and is shown to be useful in mitigating the effect of vibrations in an optical system.

7.
Appl Phys Lett ; 122(8): 081102, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36846091

RESUMO

We demonstrate a method that permits wavefront aberration correction using an array of electrowetting prisms. A fixed high fill factor microlens array followed by a lower fill factor adaptive electrowetting prism array is used to correct wavefront aberration. The design and simulation of such aberration correction mechanism is described. Our results show significant improvement to the Strehl ratio by using our aberration correction scheme which results in diffraction limited performance. Compactness and effectiveness of our design can be implemented in many applications that require aberration correction, such as microscopy and consumer electronics.

8.
Opt Express ; 30(11): 18949-18965, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221684

RESUMO

We present a tunable on-chip liquid resonator in conjunction with a tapered fiber coupling scheme. The resonator consists of a glycerol droplet submerged within an immiscible liquid bath, which mitigates the effects of environmental fluctuations. The platform is fabricated using standard semiconductor techniques, which enable the future integration of photonic components for an on-chip liquid resonator device. The liquid resonator maintains its high Q-factor on chip (105) due to surface tension forming an atomically smooth liquid-liquid interface. Higher Q-factor resonance modes experienced linewidth broadening due to the random excitation of thermal capillary vibrations. Spectral tuning is demonstrated using the electrowetting effect, increasing the surface's wettability and an expansion in the droplet diameter. A maximum spectral tuning of 1.44 nm ± 5 pm is observed by applying 35 V. The tuning range is twice the free spectral range (FSR) of 0.679 nm measured at a pumping wavelength range of 770-775 nm. A 2D axisymmetric finite-element simulation shows resonance modes in good agreement with experimentally measured spectra and with predicted tuning speeds of 20 nm/s.

9.
Biomed Opt Express ; 13(4): 2530-2541, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519247

RESUMO

We present a high-resolution miniature, light-weight fluorescence microscope with electrowetting lens and onboard CMOS for high resolution volumetric imaging and structured illumination for rejection of out-of-focus and scattered light. The miniature microscope (SIMscope3D) delivers structured light using a coherent fiber bundle to obtain optical sectioning with an axial resolution of 18 µm. Volumetric imaging of eGFP labeled cells in fixed mouse brain tissue at depths up to 260 µm is demonstrated. The functionality of SIMscope3D to provide background free 3D imaging is shown by recording time series of microglia dynamics in awake mice at depths up to 120 µm in the brain.

10.
Opt Express ; 28(5): 5991-6001, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225857

RESUMO

An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3° with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100-300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment.

11.
IEEE Sens J ; 20(7): 3496-3503, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746623

RESUMO

We present a calibration method to correct for fabrication variations and optical misalignment in a two-dimensional electrowetting scanner. These scanners are an attractive option due to being transmissive, nonmechanical, having a large scan angle (±13.7°), and low power consumption (µW). Fabrication imperfections lead to non-uniform deposition of the dielectric or hydrophobic layer which results in actuation inconsistency of each electrode. To demonstrate our calibration method, we scan a 5 × 5 grid target using a four-electrode electrowetting prism and observe a pincushion type optical distortion in the imaging plane. Zemax optical simulations verify that the symmetric distortion is due to the projection of a radial scanning surface onto a flat imaging plane, while in experiment we observe asymmetrical distortion due to optical misalignment and fabrication imperfections. By adjusting the actuation voltages through an iterative Delaunay triangulation interpolation method, the distortion is corrected and saw an improvement in the mean error across 25 grid points from 43 µm (0.117°) to 10 µm (0.027°).

12.
Opt Express ; 27(4): 4404-4415, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876059

RESUMO

A light detection and ranging (lidar) system with ±90° of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.8°. We demonstrate a method to amplify the scan angle to ±90° and perform a one-dimensional scan in a lidar system.

13.
Langmuir ; 34(48): 14511-14518, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30411903

RESUMO

Electrowetting adaptive optical devices are versatile, with applications ranging from microscopy to remote sensing. The choice of liquids in these devices governs its tuning range, temporal response, and wavelength of operation. We characterized a liquid system, consisting of 1-phenyl-1-cyclohexene and deionized water, using both lens and prism devices. The liquids have a large contact angle tuning range, from 173 to 60°. Measured maximum scanning angle was realized at ±13.7° in a two-electrode prism, with simulation predictions of ±18.2°. The liquid's switching time to reach 90° contact angle from rest, in a 4 mm diameter device, was measured at 100 ms. Steady-state scanning with a two-electrode prism showed linear and consistent scan angles of ±4.8° for a 20 V differential between the two electrodes, whereas beam scanning using the liquid system achieved ±1.74° at 500 Hz for a voltage differential of 80 V.


Assuntos
Eletroumectação/instrumentação , Dispositivos Ópticos , Cicloexanos/química , Eletrodos , Desenho de Equipamento , Fatores de Tempo , Água/química
14.
Sci Rep ; 8(1): 8108, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802371

RESUMO

We present a miniature head mounted two-photon fiber-coupled microscope (2P-FCM) for neuronal imaging with active axial focusing enabled using a miniature electrowetting lens. We show three-dimensional two-photon imaging of neuronal structure and record neuronal activity from GCaMP6s fluorescence from multiple focal planes in a freely-moving mouse. Two-color simultaneous imaging of GFP and tdTomato fluorescence is also demonstrated. Additionally, dynamic control of the axial scanning of the electrowetting lens allows tilting of the focal plane enabling neurons in multiple depths to be imaged in a single plane. Two-photon imaging allows increased penetration depth in tissue yielding a working distance of 450 µm with an additional 180 µm of active axial focusing. The objective NA is 0.45 with a lateral resolution of 1.8 µm, an axial resolution of 10 µm, and a field-of-view of 240 µm diameter. The 2P-FCM has a weight of only ~2.5 g and is capable of repeatable and stable head-attachment. The 2P-FCM with dynamic axial scanning provides a new capability to record from functionally distinct neuronal layers, opening new opportunities in neuroscience research.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Movimento , Animais , Cor , Camundongos
15.
Opt Express ; 25(25): 31451-31461, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245820

RESUMO

We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

16.
Lab Chip ; 17(15): 2674-2681, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28702651

RESUMO

Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.

17.
Langmuir ; 33(19): 4863-4869, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28431469

RESUMO

Adaptive optical lenses based on the electrowetting principle are being rapidly implemented in many applications, such as microscopy, remote sensing, displays, and optical communication. To characterize the response of these electrowetting lenses, the dependence upon direct current (DC) driving voltage functions was investigated in a low-viscosity liquid system. Cylindrical lenses with inner diameters of 2.45 and 3.95 mm were used to characterize the dynamic behavior of the liquids under DC voltage electrowetting actuation. With the increase of the rise time of the input exponential driving voltage, the originally underdamped system response can be damped, enabling a smooth response from the lens. We experimentally determined the optimal rise times for the fastest response from the lenses. We have also performed numerical simulations of the lens actuation with input exponential driving voltage to understand the variation in the dynamics of the liquid-liquid interface with various input rise times. We further enhanced the response time of the devices by shaping the input voltage function with multiple exponential rise times. For the 3.95 mm inner diameter lens, we achieved a response time improvement of 29% when compared to the fastest response obtained using single-exponential driving voltage. The technique shows great promise for applications that require fast response times.

18.
Biomed Opt Express ; 8(12): 5412-5426, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29296477

RESUMO

Laser scanners are an integral part of high resolution biomedical imaging systems such as confocal or 2-photon excitation (2PE) microscopes. In this work, we demonstrate the utility of electrowetting on dielectric (EWOD) prisms as a lateral laser-scanning element integrated in a conventional 2PE microscope. To the best of our knowledge, this is the first such demonstration for EWOD prisms. EWOD devices provide a transmissive, low power consuming, and compact alternative to conventional adaptive optics, and hence this technology has tremendous potential. We demonstrate 2PE microscope imaging of cultured mouse hippocampal neurons with a FOV of 130 × 130 µm2 using EWOD prism scanning. In addition, we show simulations of the optical system with the EWOD prism, to evaluate the effect of propagating a Gaussian beam through the EWOD prism on the imaging quality. Based on the simulation results a beam size of 0.91 mm full width half max was chosen to conduct the imaging experiments, resulting in a numerical aperture of 0.17 of the imaging system.

19.
Opt Express ; 24(9): 9660-6, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137579

RESUMO

A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks.

20.
Nanoscale ; 7(42): 17923-8, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463738

RESUMO

Work presented here measures and interprets the electrical and thermal conductivities of atomic layer deposited (ALD) free-standing single film and periodic tungsten and aluminum oxide nanobridges with thicknesses from ∼5-20 nm and ∼3-13 nm, respectively. Electrical conductivity of the W films is reduced by up to 99% from bulk, while thermal conductivity is reduced by up to 91%. Results indicate phonon contribution to thermal conductivity is dominant in these ALD films and may be substantially reduced by the incorporation of periodicity in the ALD W/Al2O3 nanolaminates. Additionally, thin film conduction modeling demonstrates nano-structured grain features largely dictate electron and phonon conduction in ALD W. New fabrication methods have allowed for the development of free-standing ultra-thin structures with layers on the order of several nanometers utilizing ALD. While the literature contains diverse studies of the physical properties of thin films prepared by traditional micro-fabrication sputtering or chemical vapor deposition techniques, there remains little data on freestanding structures containing ALD generated materials. Specifically, knowledge of the electrical and thermal conductivity of ALD generated materials will aid in the future development of ultra-thin nano-devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA