Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071993

RESUMO

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Assuntos
Transtorno Autístico , Neocórtex , Células Piramidais , Animais , Feminino , Camundongos , Gravidez , Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Neocórtex/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
2.
Neuron ; 110(12): 2024-2040.e10, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452606

RESUMO

General anesthetics induce loss of consciousness, a global change in behavior. However, a corresponding global change in activity in the context of defined cortical cell types has not been identified. Here, we show that spontaneous activity of mouse layer 5 pyramidal neurons, but of no other cortical cell type, becomes consistently synchronized in vivo by different general anesthetics. This heightened neuronal synchrony is aperiodic, present across large distances, and absent in cortical neurons presynaptic to layer 5 pyramidal neurons. During the transition to and from anesthesia, changes in synchrony in layer 5 coincide with the loss and recovery of consciousness. Activity within both apical and basal dendrites is synchronous, but only basal dendrites' activity is temporally locked to somatic activity. Given that layer 5 is a major cortical output, our results suggest that brain-wide synchrony in layer 5 pyramidal neurons may contribute to the loss of consciousness during general anesthesia.


Assuntos
Anestésicos Gerais , Células Piramidais , Anestesia Geral , Anestésicos Gerais/farmacologia , Animais , Dendritos/fisiologia , Camundongos , Células Piramidais/fisiologia , Inconsciência
3.
Development ; 146(11)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31142543

RESUMO

The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.


Assuntos
Axônios/fisiologia , Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Sinapses/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunoglobulinas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/genética
4.
Neuron ; 100(5): 1241-1251.e7, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30521779

RESUMO

Large numbers of brain regions are active during behaviors. A high-resolution, brain-wide activity map could identify brain regions involved in specific behaviors. We have developed functional ultrasound imaging to record whole-brain activity in behaving mice at a resolution of ∼100 µm. We detected 87 active brain regions during visual stimulation that evoked the optokinetic reflex, a visuomotor behavior that stabilizes the gaze both horizontally and vertically. Using a genetic mouse model of congenital nystagmus incapable of generating the horizontal reflex, we identified a subset of regions whose activity was reflex dependent. By blocking eye motion in control animals, we further separated regions whose activity depended on the reflex's motor output. Remarkably, all reflex-dependent but eye motion-independent regions were located in the thalamus. Our work identifies functional modules of brain regions involved in sensorimotor integration and provides an experimental approach to monitor whole-brain activity of mice in normal and disease states.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Nistagmo Optocinético , Desempenho Psicomotor , Ultrassonografia/métodos , Animais , Encéfalo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Nistagmo Congênito/fisiopatologia , Estimulação Luminosa , Reflexo
5.
Brain Struct Funct ; 223(1): 307-319, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28815295

RESUMO

The accessory olfactory system controls social and sexual behaviours in mice, both of which are critical for their survival. Vomeronasal sensory neuron (VSN) axons form synapses with mitral cell dendrites in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor (VR) converge into multiple glomeruli within spatially conserved regions of the AOB. Here, we have examined the role of the cell adhesion molecule Kirrel2 in the formation of glomeruli within the AOB. We find that Kirrel2 expression is dispensable for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons into the anterior and posterior regions of the AOB, but is necessary for glomeruli formation. Specific ablation of Kirrel2 expression in VSN axons results in the disorganization of the glomerular layer of the posterior AOB and in the formation of fewer and larger glomeruli. Furthermore, simultaneous ablation of Kirrel2 and Kirrel3 expression leads to a loss of morphologically identifiable glomeruli in the AOB, reduced excitatory synapse numbers, and larger presynaptic terminals. Taken together, our results demonstrate that Kirrel2 and Kirrel3 are essential for the formation of glomeruli and suggest they contribute to synaptogenesis in the AOB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/deficiência , Bulbo Olfatório/citologia , Células Receptoras Sensoriais/citologia , Sinapses/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Bulbo Olfatório/ultraestrutura , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Células Receptoras Sensoriais/metabolismo , Estatísticas não Paramétricas , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato
6.
Development ; 143(9): 1534-46, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143755

RESUMO

Cellular interactions are key for the differentiation of distinct cell types within developing epithelia, yet the molecular mechanisms engaged in these interactions remain poorly understood. In the developing olfactory epithelium (OE), neural stem/progenitor cells give rise to odorant-detecting olfactory receptor neurons (ORNs) and glial-like sustentacular (SUS) cells. Here, we show in mice that the transmembrane receptor neogenin (NEO1) and its membrane-bound ligand RGMB control the balance of neurons and glial cells produced in the OE. In this layered epithelium, neogenin is expressed in progenitor cells, while RGMB is restricted to adjacent newly born ORNs. Ablation of Rgmb via gene-targeting increases the number of dividing progenitor cells in the OE and leads to supernumerary SUS cells. Neogenin loss-of-function phenocopies these effects observed in Rgmb(-/-) mice, supporting the proposal that RGMB-neogenin signaling regulates progenitor cell numbers and SUS cell production. Interestingly, Neo1(-/-) mice also exhibit increased apoptosis of ORNs, implicating additional ligands in the neogenin-dependent survival of ORNs. Thus, our results indicate that RGMB-neogenin-mediated cell-cell interactions between newly born neurons and progenitor cells control the ratio of glia and neurons produced in the OE.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Mucosa Olfatória/embriologia , Neurônios Receptores Olfatórios/citologia , Animais , Apoptose/genética , Moléculas de Adesão Celular Neuronais , Proliferação de Células/genética , Proteínas Ligadas por GPI , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Neurogênese/fisiologia , Neuroglia/citologia , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais/fisiologia
7.
Cell Mol Life Sci ; 72(24): 4697-709, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26329476

RESUMO

Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.


Assuntos
Rede Nervosa , Órgão Vomeronasal/fisiologia , Agressão , Animais , Sinais (Psicologia) , Camundongos , Modelos Biológicos , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Comportamento Social , Estimulação Química , Órgão Vomeronasal/inervação
8.
Development ; 140(11): 2398-408, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23637329

RESUMO

The accessory olfactory system controls social and sexual interactions in mice that are crucial for survival. Vomeronasal sensory neurons (VSNs) form synapses with dendrites of second order neurons in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor coalesce into multiple glomeruli within spatially conserved regions of the AOB. Here we examine the role of the Kirrel family of transmembrane proteins in the coalescence of VSN axons within the AOB. We find that Kirrel2 and Kirrel3 are differentially expressed in subpopulations of VSNs and that their expression is regulated by activity. Although Kirrel3 expression is not required for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons in the AOB, it is necessary for proper coalescence of axons into glomeruli. Ablation of Kirrel3 expression results in disorganization of the glomerular layer of the posterior AOB and formation of fewer, larger glomeruli. Furthermore, Kirrel3(-/-) mice display a loss of male-male aggression in a resident-intruder assay. Taken together, our results indicate that differential expression of Kirrels on vomeronasal axons generates a molecular code that dictates their proper coalescence into glomeruli within the AOB.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/fisiologia , Condutos Olfatórios/fisiologia , Órgão Vomeronasal/metabolismo , Agressão , Animais , Comportamento Animal , Perfilação da Expressão Gênica , Imunoglobulinas/metabolismo , Hibridização In Situ , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA