Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Blood ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728383

RESUMO

Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current anti-thrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the crosstalk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.

2.
J Thromb Haemost ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670315

RESUMO

BACKGROUND: Free labile hemin acts as a damage-associated molecular pattern during acute and chronic hemolysis and muscle injury, supporting platelet activation and thrombosis. OBJECTIVES: To investigate the anti-thrombotic potential of hydroxychloroquine on hemolysis-induced platelet activation and arterial thrombosis. METHODS: The effect of hydroxychloroquine on hemin-induced platelet activation and hemolysis-induced platelet recruitment and aggregation was measured in washed platelets and hemolyzed blood, respectively. Its effect on ferric-chloride (FeCl3)-induced arterial thrombosis and lung perfusion following hemin injection was assessed in wild-type mice. RESULTS: Erythrocyte lysis and endothelial cell activation cooperatively supported platelet aggregation and thrombosis at arterial shear stress. This thrombotic effect was reversed by hydroxychloroquine. In a purified system, hydroxychloroquine inhibited platelet build-up on immobilized von Willebrand factor in hemolyzed blood without altering initial platelet recruitment. Hydroxychloroquine inhibited hemin-induced platelet activation and phosphatidylserine exposure independently of reactive oxygen species generation. In the presence of hemin, hydroxychloroquine did not alter glycoprotein VI shedding but reduced C-type-lectin-like-2 expression on platelets. In vivo, hydroxychloroquine reversed pulmonary perfusion decline induced by exogenous administration of hemin. In arterial thrombosis models, hydroxychloroquine inhibited ferric-chloride-induced thrombosis in the carotid artery and reduced von Willebrand factor accumulation in the thrombi. CONCLUSION: Hydroxychloroquine inhibited hemolysis-induced arterial thrombosis ex vivo and improved pulmonary perfusion in hemin-treated mice, supporting a potential benefit of its use as an adjuvant therapy in hemolytic diseases to limit arterial thrombosis and to improve organ perfusion.

3.
Front Immunol ; 14: 1226196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622117

RESUMO

Background: The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been described in both immune cells and platelets, but its role in the megakaryocyte (MK) lineage remains elusive. Objective: The aim of this study was to explore the role of NLRP3 inflammasome in megakaryocytes and platelets. Methods: We generated Nlrp3 A350V/+/Gp1ba-CreKI/+ mice carrying a mutation genetically similar to the one observed in human Muckle-Wells syndrome, which leads to hyperactivity of NLRP3 specifically in MK and platelets. Results: Platelets from the mutant mice expressed elevated levels of both precursor and active form of caspase-1, suggesting hyperactivity of NLRP3 inflammasome. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice developed normally and had normal platelet counts. Expression of major platelet receptors, platelet aggregation, platelet deposition on collagen under shear, and deep vein thrombosis were unchanged. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice had mild anemia, reduced Ter119+ cells in the bone marrow, and splenomegaly. A mild increase in MK TGF-ß1 might be involved in the anemic phenotype. Intraperitoneal injection of zymosan in Nlrp3 A350V/+/Gp1ba-CreKI/+ mice induced increased neutrophil egression and elevated levels of a set of proinflammatory cytokines, alongside IL-10 and G-CSF, in the peritoneal fluid as compared with control animals. Conclusion: MK/platelet NLRP3 inflammasome promotes the acute inflammatory response and its hyperactivation in mice leads to mild anemia and increased extramedullary erythropoiesis.


Assuntos
Anemia , Megacariócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
4.
Front Cardiovasc Med ; 10: 1167884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180784

RESUMO

Deep vein thrombosis is a life-threatening disease that takes millions of people's lives worldwide. Given both technical and ethical issues of using animals in research, it is necessary to develop an appropriate in vitro model that would recapitulate the conditions of venous thrombus development. We present here a novel microfluidics vein-on-a-chip with moving valve leaflets to mimic the hydrodynamics in a vein, and Human Umbilical Vein Endothelial Cell (HUVEC) monolayer. A pulsatile flow pattern, typical for veins, was used in the experiments. Unstimulated human platelets, reconstituted with the whole blood, accumulated at the luminal side of the leaflet tips proportionally to the leaflet flexibility. Platelet activation by thrombin induced robust platelet accrual at the leaflet tips. Inhibition of glycoprotein (GP) IIb-IIIa did not decrease but, paradoxically, slightly increased platelet accumulation. In contrast, blockade of the interaction between platelet GPIbα and A1 domain of von Willebrand factor completely abolished platelet deposition. Stimulation of the endothelium with histamine, a known secretagogue of Weibel-Palade bodies, promoted platelet accrual at the basal side of the leaflets, where human thrombi are usually observed. Thus, platelet deposition depends on the leaflet flexibility, and accumulation of activated platelets at the valve leaflets is mediated by GPIbα-VWF interaction.

5.
J Thromb Haemost ; 21(1): 101-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695374

RESUMO

BACKGROUND: Platelet endothelial aggregation receptor 1 (PEAR1) is a single-transmembrane orphan receptor primarily expressed on platelets and endothelial cells. Genetic variants of PEAR1 have repeatedly and independently been identified to be associated with cardiovascular diseases, including coronary artery disease. OBJECTIVES: We have identified sulfated fucoidans and their mimetics as ligands for PEAR1 and proposed that its endogenous ligand is a sulfated proteoglycan. The aim of this study was to test this hypothesis. METHODS: A heparin proteoglycan-mimetic (HPGM) was created by linking unfractionated heparin (UFH) to albumin. The ability of the HPGM, UFH and selectively desulfated heparins to stimulate platelet aggregation and protein phosphorylation was investigated. Nanobodies against the 12th to 13th epidermal growth factor-like repeat of PEAR1 and phosphoinositide 3-kinase (PI3K) isoform-selective inhibitors were tested for the inhibition of platelet activation. RESULTS: We show that HPGM, heparin conjugated to an albumin protein core, stimulates aggregation and phosphorylation of PEAR1 in washed platelets. Platelet aggregation was abolished by an anti-PEAR1 nanobody, Nb138. UFH stimulated platelet aggregation in washed platelets, but desulfated UFH did not. Furthermore, HPGM, but not UFH, stimulated maximal aggregation in platelet-rich plasma. However, both HPGM and UFH increased integrin αIIbß3 activation in whole blood. By using PI3K isoform-selective inhibitors, we show that PEAR1 activates PI3Kß, leading to Akt phosphorylation. CONCLUSION: Our findings reveal that PEAR1 is a receptor for heparin and HPGM and that PI3Kß is a key signaling molecule downstream of PEAR1 in platelets. These findings may have important implications for our understanding of the role of PEAR1 in cardiovascular disease.


Assuntos
Heparina , Fosfatidilinositol 3-Quinases , Humanos , Heparina/farmacologia , Heparina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Proteoglicanas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligantes , Albuminas
6.
Front Immunol ; 13: 968981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225927

RESUMO

Background: The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective: To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods: MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results: The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion: In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.


Assuntos
COVID-19 , Carboxipeptidases , Quimases/metabolismo , Citocinas , Humanos , Mastócitos/metabolismo , SARS-CoV-2 , Triptases/metabolismo , Proteínas Virais , Fator de von Willebrand
7.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628637

RESUMO

Pulmonary embolism is a life-threatening condition, which can result in respiratory insufficiency and death. Blood clots occluding branches of the pulmonary artery (PA) are traditionally considered to originate from thrombi in deep veins (usually in legs). However, growing evidence suggests that occlusion of the vessels in the lungs can develop without preceding deep vein thrombosis (DVT). In this work, we used an inferior vena cava (IVC) complete ligation model of DVT in Wistar rats to explore the possibility and mechanisms of PA thrombosis under the conditions where all routes of thrombotic mass migration from peripheral veins are blocked. We demonstrate that rats both with normal and reduced neutrophil counts developed thrombi in the IVC, although, neutropenia caused a substantial decrease in thrombus size and a shift from fresh fibrin toward mature fibrin and connective tissue inside the thrombus. Massive fibrin deposition was found in the PA branches in the majority of DVT rats with normal neutrophil counts, but in none of the neutropenic animals. Neutrophil ablation also abolished macroscopic signs of lung damage. Altogether, the results demonstrate that thrombi in the lung vasculature can form in situ by mechanisms that require local neutrophil recruitment taking place in the DVT setting.


Assuntos
Neutrófilos , Trombose Venosa , Animais , Fibrina , Pulmão , Artéria Pulmonar , Ratos , Ratos Wistar , Trombose Venosa/etiologia
8.
Front Immunol ; 12: 693974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163489

RESUMO

Platelets play a key role in the development, progression and resolution of the inflammatory response during sterile inflammation and infection, although the mechanism is not well understood. Here we show that platelet CLEC-2 reduces tissue inflammation by regulating inflammatory macrophage activation and trafficking from the inflamed tissues. The immune regulatory function of CLEC-2 depends on the expression of its ligand, podoplanin, upregulated on inflammatory macrophages and is independent of platelet activation and secretion. Mechanistically, platelet CLEC-2 and also recombinant CLEC-2-Fc accelerates actin rearrangement and macrophage migration by increasing the expression of podoplanin and CD44, and their interaction with the ERM proteins. During ongoing inflammation, induced by lipopolysaccharide, treatment with rCLEC-2-Fc induces the rapid emigration of peritoneal inflammatory macrophages to mesenteric lymph nodes, thus reducing the accumulation of inflammatory macrophages in the inflamed peritoneum. This is associated with a significant decrease in pro-inflammatory cytokine, TNF-α and an increase in levels of immunosuppressive, IL-10 in the peritoneum. Increased podoplanin expression and actin remodelling favour macrophage migration towards CCL21, a soluble ligand for podoplanin and chemoattractant secreted by lymph node lymphatic endothelial cells. Macrophage efflux to draining lymph nodes induces T cell priming. In conclusion, we show that platelet CLEC-2 reduces the inflammatory phenotype of macrophages and their accumulation, leading to diminished tissue inflammation. These immunomodulatory functions of CLEC-2 are a novel strategy to reduce tissue inflammation and could be therapeutically exploited through rCLEC-2-Fc, to limit the progression to chronic inflammation.


Assuntos
Plaquetas/metabolismo , Movimento Celular , Lectinas Tipo C/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Peritonite/metabolismo , Animais , Plaquetas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/genética , Lipopolissacarídeos , Macrófagos Peritoneais/imunologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/genética , Peritonite/imunologia , Fagocitose , Fenótipo , Células RAW 264.7 , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Blood Adv ; 5(9): 2319-2324, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33938940

RESUMO

Deep vein thrombosis (DVT) is linked to local inflammation. A role for both neutrophil extracellular traps (NETs) and the assembly of inflammasomes (leading to caspase-1-dependent interleukin-1ß activation) in the development of DVT was recently suggested. However, no link between these 2 processes in the setting of thrombosis has been investigated. Here, we demonstrate that stimulation of neutrophils induced simultaneous formation of NETs and active caspase-1. Caspase-1 was largely associated with NETs, suggesting that secreted active caspase-1 requires NETs as an adhesive surface. NETs and their components, histones, promoted robust caspase-1 activation in platelets with the strongest effect exerted by histones 3/4. Murine DVT thrombi contained active caspase-1, which peaked at 6 hours when compared with 48-hour thrombi. Platelets constituted more than one-half of cells containing active caspase-1 in dissociated thrombi. Using intravital microscopy, we identified colocalized NETs and caspase-1 as well as platelet recruitment at the site of thrombosis. Pharmacological inhibition of caspase-1 strongly reduced DVT in mice, and thrombi that still formed contained no citrullinated histone 3, a marker of NETs. Taken together, these data demonstrate a cross-talk between NETs and inflammasomes both in vitro and in the DVT setting. This may be an important mechanism supporting thrombosis in veins.


Assuntos
Armadilhas Extracelulares , Trombose Venosa , Animais , Plaquetas , Inflamassomos , Camundongos , Neutrófilos
10.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917767

RESUMO

Venous thromboembolism, a complex disease combining deep vein thrombosis (DVT) and its most dangerous complication, pulmonary embolism (PE), strikes millions of people worldwide [...].


Assuntos
Trombose Venosa/diagnóstico , Trombose Venosa/etiologia , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Trombose Venosa/metabolismo , Trombose Venosa/terapia
11.
Haematologica ; 106(1): 208-219, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949019

RESUMO

Inhibitors of the tyrosine kinase Btk have been proposed as novel antiplatelet agents. In this study we show that low concentrations of the Btk inhibitor ibrutinib block CLEC-2-mediated activation and tyrosine phosphorylation including Syk and PLCγ2 in human platelets. Activation is also blocked in patients with X-linked agammaglobulinemia (XLA) caused by a deficiency or absence of Btk. In contrast, the response to GPVI is delayed in the presence of low concentrations of ibrutinib or in patients with XLA, and tyrosine phosphorylation of Syk is preserved. A similar set of results is seen with the second-generation inhibitor, acalabrutinib. The differential effect of Btk inhibition in CLEC-2 relative to GPVI signalling is explained by the positive feedback role involving Btk itself, as well as ADP and thromboxane A2 mediated activation of P2Y12 and TP receptors, respectively. This feedback role is not seen in mouse platelets and, consistent with this, CLEC-2-mediated activation is blocked by high but not by low concentrations of ibrutinib. Nevertheless, thrombosis was absent in 8 out of 13 mice treated with ibrutinib. These results show that Btk inhibitors selectively block activation of human platelets by CLEC-2 relative to GPVI suggesting that they can be used at 'low dose' in patients to target CLEC-2 in thrombo-inflammatory disease.


Assuntos
Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas , Humanos , Lectinas Tipo C , Camundongos , Inibidores de Proteínas Quinases/farmacologia
13.
Commun Mater ; 1(1): 65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999999

RESUMO

Deep vein thrombosis is a life-threatening development of blood clots in deep veins. Immobility and blood flow stagnancy are typical risk factors indicating that fluid dynamics play an important role in the initiation of venous clots. However, the roles of physical parameters of the valves and flow conditions in deep vein thrombosis initiation have not been fully understood. Here, we describe a microfluidics in vitro method that enabled us to explore the role of valve elasticity using in situ fabrication and characterisation. In our experimental model the stiffness of each valve leaflet can be controlled independently, and various flow conditions were tested. The resulting complex flow patterns were detected using ghost particle velocimetry and linked to localised thrombus formation using whole blood and an aqueous suspension of polystyrene particles. In particular, valves with leaflets of similar stiffness had clot formation on the valve tips whereas valves with leaflets of different stiffness had clot formation in the valve pocket.

14.
Int J Biochem Cell Biol ; 128: 105850, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32950686

RESUMO

Venous thrombosis is a life-threatening condition with high morbidity and mortality. Abnormal functioning of different cells in the blood is an integral part of its pathogenesis. In this review, we describe the contribution of bone marrow-derived cells to the development of this debilitating disease. We present both epidemiological and clinical data demonstrating involvement of various cell types in venous thrombosis, and discuss potential mechanisms underlying these effects. Modern concepts including recently discovered new paradigms in thrombosis, such as neutrophil extracellular traps, mast cells, and polyphosphate, are summarized.


Assuntos
Células da Medula Óssea/metabolismo , Trombose Venosa/metabolismo , Animais , Armadilhas Extracelulares/metabolismo , Humanos , Mastócitos/metabolismo
15.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708482

RESUMO

According to a widespread theory, thrombotic masses are not formed in the pulmonary artery (PA) but result from migration of blood clots from the venous system. This concept has prevailed in clinical practice for more than a century. However, a new technologic era has brought forth more diagnostic possibilities, and it has been shown that thrombotic masses in the PA could, in many cases, be found without any obvious source of emboli. Chronic obstructive pulmonary disease, asthma, sickle cell anemia, emergency and elective surgery, viral pneumonia, and other conditions could be complicated by PA thrombosis development without concomitant deep vein thrombosis (DVT). Different pathologies have different causes for local PA thrombotic process. As evidenced by experimental results and clinical observations, endothelial and platelet activation are the crucial mechanisms of this process. Endothelial dysfunction can impair antithrombotic function of the arterial wall through downregulation of endothelial nitric oxide synthase (eNOS) or via stimulation of adhesion receptor expression. Hypoxia, proinflammatory cytokines, or genetic mutations may underlie the procoagulant phenotype of the PA endothelium. Both endotheliocytes and platelets could be activated by protease mediated receptor (PAR)- and receptors for advanced glycation end (RAGE)-dependent mechanisms. Hypoxia, in particular induced by high altitudes, could play a role in thrombotic complications as a trigger of platelet activity. In this review, we discuss potential mechanisms of PA thrombosis in situ.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Endotélio Vascular/metabolismo , Ativação Plaquetária/imunologia , Artéria Pulmonar/metabolismo , Embolia Pulmonar/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Trombose/metabolismo , Plaquetas/enzimologia , Plaquetas/imunologia , Hipóxia Celular , Micropartículas Derivadas de Células/patologia , Citocinas/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Proteína HMGB1/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/imunologia , Artéria Pulmonar/patologia , Embolia Pulmonar/genética , Embolia Pulmonar/fisiopatologia , Embolia Pulmonar/virologia , Receptor PAR-1/metabolismo , Fatores de Risco
16.
17.
Res Pract Thromb Haemost ; 4(1): 23-35, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989082

RESUMO

Beyond their role in hemostasis and thrombosis, platelets are increasingly recognized as key regulators of the inflammatory response under sterile and infectious conditions. Both platelet receptors and secretion are critical for these functions and contribute to their interaction with the endothelium and innate immune system. Platelet-leukocyte interactions are increased in thrombo-inflammatory diseases and are sensitive biomarkers for platelet activation and targets for the development of new therapies. The crosstalk between platelets and innate immune cells promotes thrombosis, inflammation, and tissue damage. However, recent studies have shown that these interactions also regulate the resolution of inflammation, tissue repair, and wound healing. Many of the platelet and leukocyte receptors involved in these bidirectional interactions are not selective for a subset of immune cells. However, specific heterotypic interactions occur in different vascular beds and inflammatory conditions, raising the possibility of disease- and organ-specific pathways of intervention. In this review, we highlight and discuss prominent and emerging interrelationships between platelets and innate immune cells and their dual role in the regulation of the inflammatory response in sterile and infectious thrombo-inflammatory diseases. A better understanding of the functional relevance of these interactions in different vascular beds may provide opportunities for successful therapeutic interventions to regulate the development, progression, and chronicity of various pathological processes.

18.
Platelets ; 31(4): 447-454, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625437

RESUMO

Deep vein thrombosis (DVT) is a disease with high prevalence and morbidity. It can lead to pulmonary embolism with severe respiratory insufficiency and risk of death. Mechanisms behind all stages of DVT, such as thrombosis commencement, propagation, and resolution, remain incompletely understood. Animal models represent an invaluable tool to explore these problems and identify new targets for DVT prevention and treatment. In this review, we discuss existing models of venous thrombosis, their advantages and disadvantages, and applicability to studying different aspects of DVT pathophysiology. We also speculate about requirements for an "ideal model" that would best recapitulate features of human DVT and discuss readouts of various models.


Assuntos
Modelos Animais de Doenças , Camundongos , Embolia Pulmonar/etiologia , Trombose Venosa/etiologia , Trombose Venosa/fisiopatologia , Animais , Cloretos/toxicidade , Constrição Patológica/fisiopatologia , Constrição Patológica/cirurgia , Veia Femoral/lesões , Veia Femoral/patologia , Veia Femoral/cirurgia , Compostos Férricos/toxicidade , Ligadura , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/complicações , Embolia Pulmonar/fisiopatologia , Veia Cava Inferior/lesões , Veia Cava Inferior/patologia , Veia Cava Inferior/cirurgia , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/genética
19.
Haematologica ; 104(8): 1648-1660, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733265

RESUMO

Platelets promote wound healing by forming a vascular plug and by secreting growth factors and cytokines. Glycoprotein (GP)VI and C-type lectin-like receptor (CLEC)-2 signal through a (hem)-immunoreceptor tyrosine-based activation motif, which induces platelet activation. GPVI and CLEC-2 support vascular integrity during inflammation in the skin through regulation of leukocyte migration and function, and by sealing sites of vascular damage. In this study, we investigated the role of impaired vascular integrity due to GPVI and/or CLEC-2 deficiency in wound repair using a full-thickness excisional skin wound model in mice. Transgenic mice deficient in both GPVI and CLEC-2 exhibited accelerated skin wound healing, despite a marked impairment in vascular integrity. The local and temporal bleeding in the skin led to greater plasma protein entry, including fibrinogen and clotting factors, was associated with increased fibrin generation, reduction in wound neutrophils and M1 macrophages, decreased level of tumor necrosis factor (TNF)-α, and enhanced angiogenesis at day 3 after injury. Accelerated wound healing was not due to developmental defects in CLEC-2 and GPVI double-deficient mice as similar results were observed in GPVI-deficient mice treated with a podoplanin-blocking antibody. The rate of wound healing was not altered in mice deficient in either GPVI or CLEC-2. Our results show that, contrary to defects in coagulation, bleeding following a loss of vascular integrity caused by platelet CLEC-2 and GPVI deficiency facilitates wound repair by increasing fibrin(ogen) deposition, reducing inflammation, and promoting angiogenesis.


Assuntos
Lectinas Tipo C/deficiência , Glicoproteínas de Membrana/deficiência , Neovascularização Fisiológica/genética , Glicoproteínas da Membrana de Plaquetas/deficiência , Cicatrização/genética , Animais , Biomarcadores , Feminino , Imunofluorescência , Imuno-Histoquímica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Pele/metabolismo , Pele/patologia
20.
J Cell Sci ; 132(5)2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30745334

RESUMO

Mesenchymal stromal cells (MSCs) upregulate podoplanin at sites of infection, chronic inflammation and cancer. Here, we investigated the functional consequences of podoplanin expression on the migratory potential of MSCs and their interactions with circulating platelets. Expression of podoplanin significantly enhanced the migration of MSCs compared to MSCs lacking podoplanin. Rac-1 inhibition altered the membrane localisation of podoplanin and in turn significantly reduced MSC migration. Blocking Rac-1 activity had no effect on the migration of MSCs lacking podoplanin, indicating that it was responsible for regulation of migration through podoplanin. When podoplanin-expressing MSCs were seeded on the basal surface of a porous filter, they were able to capture platelets perfused over the uncoated apical surface and induce platelet aggregation. Similar microthrombi were observed when endothelial cells (ECs) were co-cultured on the apical surface. Confocal imaging shows podoplanin-expressing MSCs extending processes into the EC layer, and these processes could interact with circulating platelets. In both models, platelet aggregation induced by podoplanin-expressing MSCs was inhibited by treatment with recombinant soluble C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b). Thus, podoplanin may enhance the migratory capacity of tissue-resident MSCs and enable novel interactions with cells expressing CLEC-2.


Assuntos
Plaquetas/fisiologia , Endotélio Vascular/fisiologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Trombose/metabolismo , Movimento Celular , Células Cultivadas , Endotélio Vascular/patologia , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Microscopia Confocal , Comunicação Parácrina , Agregação Plaquetária , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA