Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402317, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360573

RESUMO

Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.

2.
Front Cell Dev Biol ; 12: 1279723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086660

RESUMO

Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.

3.
Nat Cell Biol ; 26(8): 1261-1273, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969763

RESUMO

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.


Assuntos
Retículo Endoplasmático , Ácidos Graxos , Inflamação , Gotículas Lipídicas , Metabolismo dos Lipídeos , Macrófagos , Mitocôndrias , Macrófagos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Organelas/metabolismo
4.
Sci Signal ; 15(751): eabm2449, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36099341

RESUMO

Intestinal epithelial cells absorb nutrients through the brush border, composed of dense arrays of highly ordered microvilli at their apical membranes. A protocadherin-based intermicrovillar adhesion complex localized at microvilli tips mediates microvilli packing and organization. Here, we identified a second adhesion complex localized at the proximal base region of microvilli. This complex contained the immunoglobulin superfamily member TMIGD1, which directly interacted with the microvillar scaffolding proteins EBP50 and E3KARP. Complex formation with EBP50 required the activation of EBP50 by the actin-binding protein ezrin and was enhanced by the dephosphorylation of Ser162 in the PDZ2 domain of EBP50 by the phosphatase PP1α. Binding of the EBP50-ezrin complex to TMIGD1 enhanced the dynamic turnover of EBP50 at microvilli. Enterocyte-specific inactivation of Tmigd1 in mice resulted in microvillar blebbing, loss of intermicrovillar adhesion, and perturbed brush border formation. Thus, we identified a second adhesion complex in microvilli and propose a mechanism that promotes microvillar formation and dynamics.


Assuntos
Células Epiteliais , Intestinos , Glicoproteínas de Membrana/metabolismo , Animais , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo
5.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293964

RESUMO

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Assuntos
Inibição de Contato , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Inibição de Contato/genética , Receptores de Vitronectina , Tetraspaninas
6.
BMC Mol Cell Biol ; 21(1): 30, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303178

RESUMO

BACKGROUND: Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a recently identified cell adhesion molecule which is predominantly expressed by epithelial cells of the intestine and the kidney. Its expression is downregulated in both colon and renal cancer suggesting a tumor suppressive activity. The function of TMIGD1 at the cellular level is largely unclear. Published work suggests a protective role of TMIGD1 during oxidative stress in kidney epithelial cells, but the underlying molecular mechanisms are unknown. RESULTS: In this study, we address the subcellular localization of TMIGD1 in renal epithelial cells and identify a cytoplasmic scaffold protein as interaction partner of TMIGD1. We find that TMIGD1 localizes to different compartments in renal epithelial cells and that this localization is regulated by cell confluency. Whereas it localizes to mitochondria in subconfluent cells it is localized at cell-cell contacts in confluent cells. We find that cell-cell contact localization is regulated by N-glycosylation and that both the extracellular and the cytoplasmic domain contribute to this localization. We identify Synaptojanin 2-binding protein (SYNJ2BP), a PDZ domain-containing cytoplasmic protein, which localizes to both mitochondria and the plasma membrane, as interaction partner of TMIGD1. The interaction of TMIGD1 and SYNJ2BP is mediated by the PDZ domain of SYNJ2BP and the C-terminal PDZ domain-binding motif of TMIGD1. We also find that SYNJ2BP can actively recruit TMIGD1 to mitochondria providing a potential mechanism for the localization of TMIGD1 at mitochondria. CONCLUSIONS: This study describes TMIGD1 as an adhesion receptor that can localize to both mitochondria and cell-cell junctions in renal epithelial cells. It identifies SYNJ2BP as an interaction partner of TMIGD1 providing a potential mechanism underlying the localization of TMIGD1 at mitochondria. The study thus lays the basis for a better understanding of the molecular function of TMIGD1 during oxidative stress regulation.


Assuntos
Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Glicosilação , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios PDZ/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA