RESUMO
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hospitalização , Humanos , COVID-19/genética , COVID-19/epidemiologia , Hospitalização/estatística & dados numéricos , SARS-CoV-2/genética , Feminino , Masculino , Loci Gênicos , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Pessoa de Meia-Idade , Idoso , América Latina/epidemiologiaRESUMO
BACKGROUND AND AIMS: Baseline cardiovascular toxicity risk stratification is critical in cardio-oncology. The Heart Failure Association (HFA) and International Cardio-Oncology Society (ICOS) score aims to assess this risk but lacks real-life validation. This study validates the HFA-ICOS score for anthracycline-induced cardiovascular toxicity. METHODS: Anthracycline-treated patients in the CARDIOTOX registry (NCT02039622) were stratified by the HFA-ICOS score. The primary endpoint was symptomatic or moderate to severe asymptomatic cancer therapy-related cardiac dysfunction (CTRCD), with all-cause mortality and cardiovascular mortality as secondary endpoints. RESULTS: The analysis included 1066 patients (mean age 54 ± 14 years; 81.9% women; 24.5% ≥65 years). According to the HFA-ICOS criteria, 571 patients (53.6%) were classified as low risk, 333 (31.2%) as moderate risk, 152 (14.3%) as high risk, and 10 (0.9%) as very high risk. Median follow-up was 54.8 months (interquartile range 24.6-81.8). A total of 197 patients (18.4%) died, and 718 (67.3%) developed CTRCD (symptomatic: n = 45; moderate to severe asymptomatic: n = 24; and mild asymptomatic: n = 649). Incidence rates of symptomatic or moderate to severe symptomatic CTRCD and all-cause mortality significantly increased with HFA-ICOS score [hazard ratio 28.74, 95% confidence interval (CI) 9.33-88.5; P < .001, and hazard ratio 7.43, 95% CI 3.21-17.2; P < .001) for very high-risk patients. The predictive model demonstrated good calibration (Brier score 0.04, 95% CI 0.03-0.05) and discrimination (area under the curve 0.78, 95% CI 0.70-0.82; Uno's C-statistic 0.78, 95% CI 0.71-0.84) for predicting symptomatic or severe/moderate asymptomatic CTRCD at 12 months. CONCLUSIONS: The HFA-ICOS score effectively categorizes patients by cardiovascular toxicity risk and demonstrates strong predictive ability for high-risk anthracycline-related cardiovascular toxicity and all-cause mortality.
RESUMO
BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.
Assuntos
Cardiomiopatia Dilatada , Genótipo , Penetrância , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Conectina/genética , Eletrocardiografia , Seguimentos , Espanha/epidemiologia , Estudos RetrospectivosRESUMO
AIMS: Late gadolinium enhancement (LGE) is frequently found in patients with dilated cardiomyopathy (DCM); there is little information about its frequency and distribution pattern according to the underlying genetic substrate. We sought to describe LGE patterns according to genotypes and to analyse the risk of major ventricular arrhythmias (MVA) according to patterns. METHODS AND RESULTS: Cardiac magnetic resonance findings and LGE distribution according to genetics were performed in a cohort of 600 DCM patients followed at 20 Spanish centres. After exclusion of individuals with multiple causative gene variants or with variants in infrequent DCM-causing genes, 577 patients (34% females, mean age 53.5 years, left ventricular ejection fraction 36.9 ± 13.9%) conformed to the final cohort. A causative genetic variant was identified in 219 (38%) patients, and 147 (25.5%) had LGE. Significant differences were found comparing LGE patterns between genes (P < 0.001). LGE was absent or rare in patients with variants in TNNT2, RBM20, and MYH7 (0, 5, and 20%, respectively). Patients with variants in DMD, DSP, and FLNC showed a predominance of LGE subepicardial patterns (50, 41, and 18%, respectively), whereas patients with variants in TTN, BAG3, LMNA, and MYBPC3 showed unspecific LGE patterns. The genetic yield differed according to LGE patterns. Patients with subepicardial, lineal midwall, transmural, and right ventricular insertion points or with combinations of LGE patterns showed an increased risk of MVA compared with patients without LGE. CONCLUSION: LGE patterns in DCM have a specific distribution according to the affected gene. Certain LGE patterns are associated with an increased risk of MVA and with an increased yield of genetic testing.
Assuntos
Cardiomiopatia Dilatada , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/complicações , Meios de Contraste , Gadolínio , Volume Sistólico , Função Ventricular Esquerda , Arritmias Cardíacas , Estudos de Associação Genética , Valor Preditivo dos Testes , Imagem Cinética por Ressonância Magnética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genéticaRESUMO
In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.
RESUMO
INTRODUCTION: The implication of copy number variations in familial heart disease is known, although in-depth knowledge is lacking; hence, more studies are needed to further our understanding. Massively parallel sequencing, thanks to its recent surge in use, is emerging as a valid tool for the detection of this type of variant, through the use of appropriate software. METHODS: We conducted a study with 182 patients diagnosed with mendelian cardiovascular diseases who underwent sequencing using a cardiac gene panel and then a specific calling process for copy number variations (CNVs) with ExomeDepth software, which provides us with a Bayes factor (BF), a score of the probability that a CNV detected is true. RESULTS: After a rigorous CNV prioritization process, we confirmed the variants obtained by MLPA or SNP-based array, finding three real CNVs in five individuals in the MYH11, FBN1 and PDMI7 genes. CONCLUSION: The confirmed CNVs present in all cases BF values > 60, thus establishing a threshold to consider real CNVs in the calling process carried out by ExomeDepth on our gene panel.
Assuntos
Variações do Número de Cópias de DNA , Cardiopatias , Humanos , Teorema de Bayes , Software , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10-22 and P = 8.1 × 10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10-8) and ARHGAP33 (P = 1.3 × 10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , COVID-19/genética , Caracteres Sexuais , Loci Gênicos , Predisposição Genética para DoençaRESUMO
In Brugada syndrome, even within the same family where all affected individuals share the same mutation, phenotypic variation is prominent, with variable penetrance and expressivity, presenting different degrees of involvement. It is difficult to establish a direct correlation between genotype and phenotype to predict prognosis in complications and risk of sudden death. The factors that modulate this inter- and intra-familial phenotypic variability remain to be determined. With the intention of testing whether other genetic factors, in addition to the causal mutation in SCN5A, may have a modulating effect on the Brugada phenotype and the risk of sudden death, we have studied 8 families with a causal variant in SCN5A with at least two affected individuals, one of whom has suffered cardiac arrest or sudden death. Whole exome sequencing was performed looking for additional variants that modify the phenotype and allow us to predict a better or worse prognosis for the evolution of the disease. The results did not show any clear genetic modifier; nevertheless, highlight the possible implication of the cholesterol and fibrosis pathways, as well as the circadian rhythm, as possible modulators of Brugada syndrome phenotype.
Assuntos
Síndrome de BrugadaRESUMO
BACKGROUND: The clinical relevance of genetic variants in nonischemic dilated cardiomyopathy (DCM) is unsettled. OBJECTIVES: The study sought to assess the prognostic impact of disease-causing genetic variants in DCM. METHODS: Baseline and longitudinal clinical data from 1,005 genotyped DCM probands were retrospectively collected at 20 centers. A total of 372 (37%) patients had pathogenic or likely pathogenic variants (genotype positive) and 633 (63%) were genotype negative. The primary endpoint was a composite of major adverse cardiovascular events. Secondary endpoints were end-stage heart failure (ESHF), malignant ventricular arrhythmia (MVA), and left ventricular reverse remodeling (LVRR). RESULTS: After a median follow-up of 4.04 years (interquartile range: 1.70-7.50 years), the primary endpoint had occurred in 118 (31.7%) patients in the genotype-positive group and in 125 (19.8%) patients in the genotype-negative group (hazard ratio [HR]: 1.51; 95% confidence interval [CI]: 1.17-1.94; P = 0.001). ESHF occurred in 60 (16.1%) genotype-positive patients and in 55 (8.7%) genotype-negative patients (HR: 1.67; 95% CI: 1.16-2.41; P = 0.006). MVA occurred in 73 (19.6%) genotype-positive patients and in 77 (12.2%) genotype-negative patients (HR: 1.50; 95% CI: 1.09-2.07; P = 0.013). LVRR occurred in 39.6% in the genotype-positive group and in 46.2% in the genotype-negative group (P = 0.047). Among individuals with baseline left ventricular ejection fraction ≤35%, genotype-positive patients exhibited more major adverse cardiovascular events, ESHF, and MVA than their genotype-negative peers (all P < 0.02). LVRR and clinical outcomes varied depending on the underlying affected gene. CONCLUSIONS: In this study, DCM patients with pathogenic or likely pathogenic variants had worse prognosis than genotype-negative individuals. Clinical course differed depending on the underlying affected gene.
Assuntos
Cardiomiopatia Dilatada/genética , Variação Genética , Insuficiência Cardíaca/genética , Adulto , Idoso , Arritmias Cardíacas/fisiopatologia , Feminino , Genótipo , Ventrículos do Coração , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Risco , Volume Sistólico/genética , Resultado do Tratamento , Disfunção Ventricular/fisiopatologia , Função Ventricular Esquerda , Remodelação VentricularRESUMO
Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) and is one of the major causes of sudden cardiac death (SCD). An exon-targeted gene sequencing strategy was used to investigate the association of functional variants in sarcomeric genes (MYBPC3, MYH7 and TNNT2) with severe LVH and other SCD-related risk factors in Brazilian HCM patients. Clinical data of 55 HCM patients attending a Cardiology Hospital (Sao Paulo city, Brazil) were recorded. Severe LVH, aborted SCD, family history of SCD, syncope, non-sustained ventricular tachycardia and abnormal blood pressure in response to exercise were evaluated as SCD risk factors. Blood samples were obtained for genomic DNA extraction and the exons and untranslated regions of the MYH7, MYBPC3 and TNNT2 were sequenced using Nextera® and MiSEq® reagents. Variants were identified and annotated using in silico tools, and further classified as pathogenic or benign according to the American College of Medical Genetics and Genomics guidelines. Variants with functional effects were identified in MYBPC3 (n = 9), MYH7 (n = 6) and TNNT2 (n = 4). The benign variants MYBPC3 p.Val158Met and TNNT2 p.Lys263Arg were associated with severe LVH (p < 0.05), and the MYH7 p.Val320Met (pathogenic) was associated with family history of SCD (p = 0.037). Increased risk for severe LVH was found in carriers of MYBPC3 Met158 (c.472 A allele, OR = 13.5, 95% CI = 1.80-101.12, p = 0.011) or combined variants (MYBPC3, MYH7 and TNNT2: OR = 12.39, 95% CI = 2.14-60.39, p = 0.004). Carriers of TNNT2 p.Lys263Arg and combined variants had higher values of septum thickness than non-carriers (p < 0.05). Molecular modeling analysis showed that MYBPC3 158Met reduces the interaction of cardiac myosin-binding protein C (cMyBP-C) RASK domain (amino acids Arg215-Ala216-Ser217-Lys218) with tropomyosin. In conclusion, the variants MYBPC3 p.Val158Met, TNNT2 p.Lys263Arg and MYH7 p.Val320Met individually or combined contribute to the risk of sudden cardiac death and other outcomes of hypertrophic cardiomyopathy.
Assuntos
Cardiomiopatia Hipertrófica , Morte Súbita Cardíaca , Hipertrofia Ventricular Esquerda , Variantes FarmacogenômicosRESUMO
Abstract Introduction: Sticky platelet syndrome (SPS) is a prothrombotic condition characterized by increased platelet aggregation that causes arterial and venous thrombosis. Its diagnosis is reached by identifying increased aggregation using low concentrations of adenosine diphosphate and epinephrine in platelet aggregation tests. Objectives: To identify common mutations through exome sequencing in two patients from the same family diagnosed with SPS and, thus, contribute to the molecular study of this disease. Materials and methods: Descriptive study. In January 2018, exome sequencing was performed in a 10-year-old patient treated at Fundación HOMI (Bogotá D.C., Colombia), index case, and in one of his adult first-degree relatives, both with a history of thrombotic disease and diagnosed with SPS. Exome sequencing was performed at the Complexo Hospitalario Universitario de Santiago de Compostela (Spain) using the SureSelect Clinical Research Exome V2 software by Agilent. Results: Exome sequencing led to detect genetic variants in both cases when compared with the reference sequence. The following variant was identified in the two samples: a cytosine to thymine transition at position c.236 (NM_000174.4) of the glycoprotein (GP)Ib-IX-V complex platelet membrane receptor, which causes a heterozygous transition of the amino acid threonine to isoleucine (i.e., a transition from hydrophilic amino acid to a hydrophobic amino acid) at position p. 79 of the extracellular leucine-rich repeat domain of GPIba subunit of the (GP)Ib-IX complex, involving a conformational change of the main receptor of ligands IB alpha, which might result in platelet hyperaggregation and thrombosis. This variant has not been described in patients with SPS to date. Conclusion: The mutation identified in both samples could be related to SPS considering the importance of glycoprotein IX in platelet function.
Resumen Introducción. El síndrome de plaqueta pegajosa (SPP) es una condición protrombótica caracterizada por un incremento de la agregabilidad plaquetaria que causa trombosis arterial y venosa. Su diagnóstico se realiza al identificar el aumento de la agregabilidad utilizando bajas concentraciones de adenosín difosfato y epinefrina en pruebas de agregación plaquetaria. Objetivos. Identificar mutaciones comunes mediante secuenciación del exoma en dos pacientes de una misma familia con diagnóstico de SPP y, de esta forma, contribuir al estudio molecular de esta enfermedad. Materiales y métodos. Estudio descriptivo en el que se realizó secuenciación del exoma en un paciente de 10 años atendido en la Fundación HOMI (Bogotá, Colombia), caso índice, y en uno de sus familiares adultos en primer grado, ambos con antecedente de enfermedad trombótica y diagnosticados con SPP. La secuenciación del exoma se realizó en el Complexo Hospitalario Universitario de Santiago de Compostela (España) con el programa SureSelect Clinical Research Exome V2 de Agilent. Resultados. En la secuenciación del exoma se detectaron variantes genéticas en ambos casos en comparación con la secuencia de referencia. En las muestras de ambos pacientes se identificó una variante heterocigota consistente en una transición de citosina a timina en la posición c.236 (NM_000174.4) que provoca el cambio del aminoácido treonina por isoleucina en la posición p.79 del dominio extracelular repetitivo rico en leucina (subunidad GPIba del complejo de la glicoproteína Ib-IX-V) y que podría provocar el cambio conformacional del receptor principal del ligando Ib alfa, así como hiperagregación plaquetaria y trombosis. Esta variante no ha sido descrita previamente en pacientes con SPP. Conclusión. La mutación identificada en las muestras estudiadas podría estar relacionada con el SPP considerando la importancia de la glicoproteína IX en las funciones plaquetarias.
RESUMO
Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) and is one of the major causes of sudden cardiac death (SCD). An exon-targeted gene sequencing strategy was used to investigate the association of functional variants in sarcomeric genes (MYBPC3, MYH7 and TNNT2) with severe LVH and other SCD-related risk factors in Brazilian HCM patients. Clinical data of 55 HCM patients attending a Cardiology Hospital (Sao Paulo city, Brazil) were recorded. Severe LVH, aborted SCD, family history of SCD, syncope, non-sustained ventricular tachycardia and abnormal blood pressure in response to exercise were evaluated as SCD risk factors. Blood samples were obtained for genomic DNA extraction and the exons and untranslated regions of the MYH7, MYBPC3 and TNNT2 were sequenced using Nextera® and MiSEq® reagents. Variants were identified and annotated using in silico tools, and further classified as pathogenic or benign according to the American College of Medical Genetics and Genomics guidelines. Variants with functional effects were identified in MYBPC3 (n = 9), MYH7 (n = 6) and TNNT2 (n = 4). The benign variants MYBPC3 p.Val158Met and TNNT2 p.Lys263Arg were associated with severe LVH (p < 0.05), and the MYH7 p.Val320Met (pathogenic) was associated with family history of SCD (p = 0.037). Increased risk for severe LVH was found in carriers of MYBPC3 Met158 (c.472 A allele, OR = 13.5, 95% CI = 1.80-101.12, p = 0.011) or combined variants (MYBPC3, MYH7 and TNNT2: OR = 12.39, 95% CI = 2.14-60.39, p = 0.004). Carriers of TNNT2 p.Lys263Arg and combined variants had higher values of septum thickness than non-carriers (p < 0.05). Molecular modeling analysis showed that MYBPC3 158Met reduces the interaction of cardiac myosin-binding protein C (cMyBP-C) RASK domain (amino acids Arg215-Ala216-Ser217-Lys218) with tropomyosin. In conclusion, the variants MYBPC3 p.Val158Met, TNNT2 p.Lys263Arg and MYH7 p.Val320Met individually or combined contribute to the risk of sudden cardiac death and other outcomes of hypertrophic cardiomyopathy.
Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação , Cadeias Pesadas de Miosina/genética , Troponina T/genética , Brasil , Morte Súbita Cardíaca/etiologia , Ecocardiografia , Feminino , Estudos de Associação Genética , Septos Cardíacos/diagnóstico por imagem , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sequência de DNAAssuntos
Cardiomiopatias/prevenção & controle , Cardiotoxicidade/prevenção & controle , Infecções por Coronavirus/complicações , Técnicas de Diagnóstico Molecular , Pneumonia Viral/complicações , COVID-19 , Teste para COVID-19 , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/terapia , Humanos , Pandemias , Pneumonia Viral/terapia , Fatores de Risco , Trombose/diagnóstico , Trombose/etiologia , Trombose/prevenção & controle , Tratamento Farmacológico da COVID-19RESUMO
In many SCD cases, in particular in pediatric age, autopsy can be completely negative and then a post-mortem genetic testing (molecular autopsy) is indicated. In NGS era finding new/rare variants is extremely frequent and, when only variants of unknown significance are found, molecular autopsy fails to find a cause of death. We describe the emblematic case of the sudden death of a 7-year-old girl. We performed a full-body micro-CT analysis, an accurate autopsy, a serum tryptase test and toxicological tests. Since the only macroscopic abnormality we found was a myocardial bridging (length: 1,1 cm, thickness: 0,5 cm) of the left anterior descending coronary artery, a molecular autopsy has been performed. NGS analysis on victim DNA detected rare variants in DPP6, MYH7, SCN2B and NOTCH1 and segregation analysis was then achieved. On the basis of ACMG/AMP (clinical) guidelines, all the found variants were classified as of unknown significance. In other words, both the macroscopic and genetic anomalies we found were of uncertain significance and then the autopsy failed to find the cause of the death. Our case raises three main discussion points: (a) economical, ethical and legal limitations of genetic investigation; (b) risk that genetic testing does not succeed in finding a certain cause of the death; (c) absence of specific guidelines to face the problem of VUS in forensic cases.
RESUMO
AIMS: To assess the functional impact of two combined KCNH2 variants involved in atrial fibrillation, syncope and sudden infant death syndrome. METHODS AND RESULTS: Genetic testing of a 4-month old SIDS victim identified a rare missense heterozygous in KCNH2 variant (V483I) and a missense homozygous polymorphism (K897T) which is often described as a genetic modifier. Electrophysiological characterisation of heterologous HERG channels representing two different KCNH2 genotypes within the family, showed significant differences in both voltage and time dependence of activation and inactivation with a global gain-of-function effect of mutant versus wild type channels and, also, differences between both types of recombinant channels. CONCLUSIONS: The rare variant V483I in combination with K897T produces a gain-of-function effect that represents a pathological substrate for atrial fibrillation, syncope and sudden infant death syndrome events in this family. Ascertaining the genotype-phenotype correlation of genetic variants is imperative for the correct assessment of genetic testing and counselling. TRANSLATIONAL PERSPECTIVE: According to the current guidelines for clinical interpretation of sequence variants, functional studies are an essential tool for the ascertainment of variant pathogenicity. They are especially relevant in the context of sudden infant death syndrome and sudden cardiac death, where individuals cannot be clinically evaluated. The patch-clamp technique is a gold-standard for analysis of the biophysical mechanisms of ion channels.
Assuntos
Fibrilação Atrial/genética , Canal de Potássio ERG1/genética , Mutação de Sentido Incorreto , Linhagem , Morte Súbita do Lactente/genética , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo GenéticoAssuntos
Calsequestrina/genética , DNA/genética , Morte Súbita Cardíaca/etiologia , Mutação , Taquicardia Ventricular/genética , Adulto , Calsequestrina/metabolismo , Análise Mutacional de DNA , Eletrocardiografia , Evolução Fatal , Humanos , Masculino , Linhagem , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismoRESUMO
Cases of sudden cardiac death (SCD) in young and apparently healthy individuals represent a devastating event in affected families. Hereditary arrhythmia syndromes, which include primary electrical heart disorders as well as cardiomyopathies, are known to contribute to a significant number of these sudden death cases. We performed postmortem genetic analyses in young sudden death cases (aged <45years) by means of a defined gene panel using massive parallel sequencing (MPS). The data were evaluated bioinformatically and detected sequence variants were assessed using common databases and applying in silico prediction tools. In this study, we identified variants with likely pathogenic effect in 6 of 9 sudden unexpected death (SUD) cases. Due to the detection of numerous unknown and unclassified variants, interpretation of the results proved to be challenging. However, by means of an appropriate evaluation of the findings, MPS represents an important tool to support the forensic investigation and implies great progress for relatives of young SCD victims facilitating adequate risk stratification and genetic counseling.