Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 343, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693791

RESUMO

BACKGROUND: Early seed germination and a functional root system development during establishment are crucial attributes contributing to nutrient competence under marginal nutrient soil conditions. Chenopodium quinoa Willd (Chenopodiaceae) is a rustic crop, able to grow in marginal areas. Altiplano and Coastal/Lowlands are two representative zones of quinoa cultivation in South America with contrasting soil fertility and edaphoclimatic conditions. In the present work, we hypothesize that the ecotypes of Quinoa from Altiplano (landrace Socaire) and from Coastal/Lowland (landrace Faro) have developed differential adaptive responses in order to survive under conditions of low availability of N in their respective climatic zones of Altiplano and Lowlands. In order to understand intrinsic differences for N competence between landraces, seed metabolite profile and germinative capacity were studied. Additionally, in order to elucidate the mechanisms of N uptake and assimilation at limiting N conditions during establishment, germinated seeds of both landraces were grown at either sufficient nitrate (HN) or low nitrate (LN) supply. We studied the photosynthetic performance, protein storage, root morphometrical parameters, activity and expression of N-assimilating enzymes, and the expression of nitrate transporters of roots in plants submitted to the different treatments. RESULTS: Seeds from Socaire landrace presented higher content of free N-related metabolites and faster seed germination rate compared to Faro landrace. Seedlings of both ecotypes presented similar physiological performance at HN supply, but at LN supply their differences were exalted. At LN, Socaire plants showed an increased root biomass (including a higher number and total length of lateral roots), a differential regulation of a nitrate transporter (a NPF6.3-like homologue) belonging to the Low Affinity Transport System (LATS), and an upregulation of a nitrate transporter (a NRT2.1-like homologue) belonging to the High Affinity nitrate Transport System (HATS) compared to Faro. These responses as a whole could be linked to a higher amount of stored proteins in leaves, associated to an enhanced photochemical performance in Altiplano plants, in comparison to Lowland quinoa plants. CONCLUSIONS: These differential characteristics of Socaire over Faro plants could involve an adaptation to enhanced nitrate uptake under the brutal unfavorable climate conditions of Altiplano.


Assuntos
Chenopodium quinoa/metabolismo , Nitrogênio/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chile , Ecótipo , Regulação da Expressão Gênica de Plantas , Germinação , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/fisiologia
2.
Sci Rep ; 8(1): 17524, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504781

RESUMO

Quinoa has been highlighted as a promising crop to sustain food security. The selection of physiological traits that allow identification genotypes with high Nitrogen use efficiency (NUE) is a key factor to increase Quinoa cultivation. In order to unveil the underpinning mechanisms for N-stress tolerance in Quinoa, three genotypes with similar phenology, but different NUE were developed under high (HN) or low (LN) nitrogen conditions. N metabolism processes and photosynthetic performance were studied after anthesis and in correlation with productivity to identify principal traits related to NUE. We found that protein content, net photosynthesis and leaf dry-mass were determinant attributes for yield at both HN and LN conditions. Contrastingly, the enhancement of N related metabolites ([Formula: see text], proline, betacyanins) and processes related with re-assimilation of [Formula: see text], including an increment of glutamine synthetase activity and up-regulation of CqAMT1,1 transporter expression in leaves, were negatively correlated with grain yield at both N conditions. Biochemical aspects of photosynthesis and root biomass were traits exclusively associated with grain yield at LN. The impact of N supply on seed quality is discussed. These results provide new insights towards the understanding the N metabolism of Quinoa.


Assuntos
Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Genótipo , Nitrogênio/metabolismo , Biomassa , Clorofila/metabolismo , Fenótipo , Fotossíntese , Característica Quantitativa Herdável , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA