Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Heliyon ; 10(7): e28851, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596029

RESUMO

Microplastics (MPs) have been identified as a major potential threat to the biota and human health. Despite the exponential increase in MP research worldwide, few studies have focused on the extensive Amazon biome. To assess research priorities, the present study reviewed and summarized the available scientific knowledge on MPs in the Amazon, in addition to analyzing population and waste-management data, to evaluate potential sources of MPs in the hydrographic system. Poor sanitation conditions are a main source of MPs for the vast hydrographic basin, and, consequently, for the adjacent ocean. Secondary MPs predominated, mostly fibers (96% of debris), composed of polyamide (32%). Mean MP concentrations ranged from 0.34 to 38.3 particles.individual-1 in biota, 5 to 476,000 particles.m-3 in water, and 492.5 to 1.30848 × 107 particles.m-3 in sediment, values in close comparison with those found in areas profoundly affected by anthropogenic pollution. MPs were widespread in a range of Amazonian environments and species, and negative effects are probably occurring at various ecological levels. However, limited research, methodological constraints, flaws and the lack of standardization, combined with the continental dimensions of the Amazon, hampers the collection of the fundamental knowledge needed to reliably evaluate the impacts and implement effective mitigation measures. There is an urgent need to expand scientific data available for the region, improving local research infrastructure, and training and deploying local researchers.

2.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446039

RESUMO

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Criança , Humanos , Animais , Suínos , Pré-Escolar , Idoso , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Chile/epidemiologia , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
3.
Virus Evol ; 9(2): vead066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131005

RESUMO

Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing data.

4.
Infect Drug Resist ; 16: 6451-6462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789836

RESUMO

Purpose: Colistin resistance mechanisms involving mutations in chromosomal genes associated with LPS modification are not completely understood. Mutations in genes coding for the MgrB regulator frequently account for colistin resistance in Klebsiella pneumoniae, whereas mutations in genes coding for PhoPQ and PmrAB are frequent in E. coli. Our aim was to perform a genetic analysis of chromosomal mutations in colistin-resistant (MIC ≥4 µg/mL) clinical isolates of K. pneumoniae (n = 8) and E. coli (n = 7) of different STs. Methods: Isolates were obtained in a 3-year period in a university hospital in Santiago, Chile. Susceptibility to colistin, aminoglycosides, cephalosporins, carbapenems and ciprofloxacin was determined through broth microdilution. Whole genome sequencing was performed for all isolates and chromosomal gene sequences were compared with sequences of colistin-susceptible isolates of the same sequence types. Results: None of the isolates carried mcr genes. Most of the isolates were susceptible to all the antibiotics analyzed. E. coli isolates were ST69, ST127, ST59, ST131 and ST14, and K. pneumoniae isolates were ST454, ST45, ST6293, ST380 and ST25. All the isolates had mutations in chromosomal genes analyzed. K. pneumoniae had mutations mainly in mgrB gene, whereas E. coli had mutations in pmrA, pmrB and pmrE genes. Most of the amino acid changes in LPS-modifying enzymes of colistin-resistant isolates were found in colistin-susceptible isolates of the same and/or different ST. Eleven of them were found only in colistin-resistant isolates. Conclusion: Colistin resistance mechanisms depend on genetic background, and are due to chromosomal mutations, which implies a lower risk of transmission than plasmid-mediated genes. Colistin resistance is not associated with multidrug-resistance, nor to high-risk sequence types.

5.
Microbiome ; 11(1): 158, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491320

RESUMO

BACKGROUND: Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. RESULTS: A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica. CONCLUSION: This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. Video Abstract.


Assuntos
Doenças dos Bovinos , Doenças Respiratórias , Rinite , Vírus , Animais , Bovinos , Austrália , Vírus/genética , Doenças dos Bovinos/microbiologia
6.
Emerg Infect Dis ; 29(9): 1842-1845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487166

RESUMO

In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Aves , Chile/epidemiologia , Influenza Aviária/epidemiologia , Filogenia
7.
Front Neurol ; 14: 1149294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034080

RESUMO

Background and purpose: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can exacerbate previous headache disorders or change the type of pain experienced from headaches. This study aimed to investigate the clinical features of Long COVID headaches. Method: This was a cross-sectional, descriptive, and analytical observational study that included 102 patients (with previous headache, n = 50; without previous headache, n = 52) with long COVID and headache complaints. The Migraine Disability Assessment Test and Visual Analog Pain Scale were used to collect participants' headache data according to a standardized protocol. Results: The patients in this study who reported experiencing headaches before COVID-19 had longer headache duration in the long COVID phase than that in the pre-long COVID phase (p = 0.031), exhibited partial improvement in headache symptoms with analgesics (p = 0.045), and had a duration of long COVID of <1 year (p = 0.030). Patients with moderate or severe disability and those classified as having severe headaches in the long COVID phase were highly likely to develop chronic headaches. Hospital admission [odds ratio (OR) = 3.0082; 95% confidence interval (95% CI): 1.10-8.26], back pain (OR = 4.0017; 95% CI: 1.13-14.17), insomnia (OR = 3.1339; 95% CI: 1.39-7.06), and paraesthesia (OR = 2.7600; 95% CI: 1.20-6.33) were associated with headache in these patients. Conclusion: Headache is a disabling condition in patients with long COVID-19, exacerbating the conditions of those with headaches prior to contracting COVID-19.

8.
DNA Cell Biol ; 42(6): 274-288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576491

RESUMO

Together with an anti-tumor immune response, oncolysis using a recombinant viral vector promises to eliminate cancer cells by both gene transfer and host-mediated functions. In this study we explore oncolysis induced by nonreplicating adenoviral vectors used for p14ARF and interferon-ß (hIFNß) gene transfer in human melanoma cell lines, revealing an unexpected role for p14ARF in promoting cellular responses predictive of immune stimulation. Oncolysis was confirmed when UACC-62 (p53 wild-type) cells succumbed upon p14ARF gene transfer in vitro, whereas SK-Mel-29 (p53-mutant) benefitted from its combination with hIFNß. In the case of UACC-62, in situ gene therapy in nude mice yielded reduced tumor progression in response to the p14ARF and hIFNß combination. Potential for immune stimulation was revealed where p14ARF gene transfer in vitro was sufficient to induce emission of immunogenic cell death factors in UACC-62 and upregulate pro-immune genes, including IRF1, IRF7, IRF9, ISG15, TAP-1, and B2M. In SK-Mel-29, p14ARF gene transfer induced a subset of these factors. hIFNß was, as expected, sufficient to induce these immune-stimulating genes in both cell lines. This work is a significant advancement for our melanoma gene therapy strategy because we revealed not only the induction of oncolysis, but also the potential contribution of p14ARF to immune stimulation.


Assuntos
Melanoma , Proteína Supressora de Tumor p14ARF , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Nus , Apoptose/fisiologia , Linhagem Celular , Melanoma/genética , Melanoma/terapia
9.
Transbound Emerg Dis ; 69(6): e3462-e3468, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327129

RESUMO

Seneca Valley virus (SVV) is a non-enveloped RNA virus and the only member of the Senecavirus A (SVA) species, in the Senecavirus genus, Picornaviridae family. SVV infection causes vesicular lesions in the oral cavity, snout and hooves of pigs. This infection is clinically indistinguishable from trade-restrictions-related diseases such as foot-and-mouth disease. Other clinical manifestations include diarrhoea, anorexia, lethargy, neurological signs and mortality in piglets during their first week of age. Before this study, Chile was considered free of vesicular diseases of swine, including SVV. In April 2022, a suspected case of vesicular disease in a swine farm was reported in Chile. The SVV was confirmed and other vesicular diseases were ruled out. An epidemiological investigation and phylogenetic analyses were performed to identify the origin and extent of the outbreak. Three hundred ninety-five samples from 44 swine farms were collected, including faeces (208), oral fluid (28), processing fluid (14), fresh semen (61), environmental samples (80) and tissue from lesions (4) for real-time RT-PCR detection. Until June 2022, the SVV has been detected in 16 out of 44 farms, all epidemiologically related to the index farm. The closest phylogenetic relationship of the Chilean SVV strain is with viruses collected from swine in California in 2017. The direct cause of the SVV introduction has not yet been identified; however, the phylogenetic analyses suggest the USA as the most likely source. Since the virus remains active in the environment, transmission by fomites such as contaminated feed cannot be discarded. Further studies are needed to determine the risk of the introduction of novel SVV and other transboundary swine pathogens to Chile.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , Suínos , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/diagnóstico , Chile/epidemiologia , Filogenia , Picornaviridae/genética , RNA Viral
10.
Microbiol Spectr ; 10(5): e0246322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154439

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAb) is a public health threat accounting for a significant number of hospital-acquired infections. Despite the importance of this pathogen, there is scarce literature on A. baumannii molecular epidemiology and evolutionary pathways relevant to resistance emergence in South American strains. We analyzed the genomic context of 34 CRAb isolates recovered from clinical samples between 2010 and 2013 from two hospitals in Santiago, Chile, using whole-genome sequencing. Several Institut Pasteur scheme sequence types (STs) were identified among the 34 genomes studied here, including ST1, ST15, ST79, ST162, and ST109. No ST2 (the most widespread sequence type) strain was detected. Chilean isolates were phylogenetically closely related, forming lineages specific to South America (e.g., ST1, ST79, and ST15). The genomic contexts of the resistance genes were diverse: while genes were present in a plasmid in ST15 strains, all genes were chromosomal in ST79 strains. Different variants of a small Rep_3 plasmid played a central role in the acquisition of the oxa58 carbapenem and aacC2 aminoglycoside resistance genes in ST1, ST15, and ST79 strains. The aacC2 gene along with blaTEM were found in a novel transposon named Tn6925 here. Variants of Tn7 were also found to play an important role in the acquisition of the aadA1 and dfrA1 genes. This work draws a detailed picture of the genetic context of antibiotic resistance genes in a set of carbapenem-resistant A. baumannii strains recovered from two Chilean hospitals and reveals a complex evolutionary picture of antibiotic resistance gene acquisition events via multiple routes involving several mobile genetic elements. IMPORTANCE Treating infections caused by carbapenem-resistant A. baumannii (CRAb) has become a global challenge given that CRAb strains are also often resistant to a wide range of antibiotics. Analysis of whole-genome sequence data is now a standard approach for studying the genomic context of antibiotic resistance genes; however, genome sequence data from South American countries are scarce. Here, phylogenetic and genomic analyses of 34 CRAb strains recovered from 2010 to 2013 from two Chilean hospitals revealed a complex picture leading to the generation of resistant lineages specific to South America. From these isolates, we characterized several mobile genetic elements, some of which are described for the first time. The genome sequences and analyses presented here further our understanding of the mechanisms leading to multiple-drug resistance, extensive drug resistance, and pandrug resistance phenotypes in South America. Therefore, this is a significant contribution to elucidating the global molecular epidemiology of CRAb.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Chile/epidemiologia , Filogenia , Carbapenêmicos/farmacologia , Aminoglicosídeos , Resistência Microbiana a Medicamentos , Hospitais , Genômica , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Front Cell Infect Microbiol ; 12: 981792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118031

RESUMO

Ceftazidime/Avibactam (CAZ/AVI) is frequently used to treat KPC-producing Pseudomonas aeruginosa (KPC-PA) and Enterobacterales. CAZ/AVI resistance is driven by several mechanisms. In P. aeruginosa this mainly occurs through alteration of AmpC, porins, and/or efflux pump overexpression, whereas in Enterobacterales it frequently occurs through D179Y substitution in the active site of KPC enzyme. This aminoacid change abolishes AVI binding to the KPC active site, hence inhibition is impaired. However, this substitution also decreases KPC-mediated resistance to carbapenems ("see-saw" effect). The goal of this work was to characterize the in vivo acquisition of CAZ/AVI resistance through D179Y substitution in a KPC-PA isolated from a hospitalized patient after CAZ/AVI treatment. Two KPC-PA isolates were obtained. The first isolate, PA-1, was obtained before CAZ/AVI treatment and was susceptible to CAZ/AVI. The second isolate, PA-2, was obtained after CAZ/AVI treatment and exhibited high-level CAZ/AVI resistance. Characterization of isolates PA-1 and PA-2 was performed through short and long-read whole genome sequencing analysis. The hybrid assembly showed that PA-1 and PA-2A had a single plasmid of 54,030 bp, named pPA-1 and pPA-2 respectively. Each plasmid harbored two copies of the bla KPC-containing Tn4401b transposon. However, while pPA-1 carried two copies of bla KPC-2, pPA-2 had one copy of bla KPC-2 and one copy of bla KPC-33, the allele with the D179Y substitution. Interestingly, isolate PA-2 did not exhibit the "see-saw" effect. The bla KPC-33 allele was detected only through hybrid assembly using a long-read-first approach. The present work describes a KPC-PA isolate harboring a plasmid-borne CAZ/AVI resistance mechanism based on two copies of bla KPC-2-Tn4401b and D179Y mutation in one of them, that is not associated with loss of resistance to carbapenems. These findings highlight the usefulness of a fine-tuned combined analysis of short and long-read data to detect similar emerging resistance mechanisms.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Porinas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
12.
Front Vet Sci ; 9: 931477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909675

RESUMO

Bovine rotavirus A (boRVA) strains are common causative agents of diarrhea in calves, resulting in economic losses to the beef and dairy industry. Importantly, this virus has a zoonotic relevance due to its ability to reassort with human rotaviruses. In this study, fecal samples were collected from three calves with diarrhea during an outbreak on a dairy farm. The genetic material of boRVA was detected by real-time reverse transcription PCR (rtPCR) in two samples. Then the virus in one of these positive samples was identified as a novel boRVA genotype closely related with human rotavirus strains mainly from the USA based on whole-genome characterization. However, we consider the novel boRVA as the etiological agent of the outbreak due to the lesions associated with a rotavirus infection. Further studies are necessary to clarify the evolutionary advantages that novel rotavirus genotypes may have.

13.
Viruses ; 14(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35632639

RESUMO

African buffalo are the natural reservoirs of the SAT serotypes of foot-and-mouth disease virus (FMDV) in sub-Saharan Africa. Most buffalo are exposed to multiple FMDV serotypes early in life, and a proportion of them become persistently infected carriers. Understanding the genetic diversity and evolution of FMDV in carrier animals is critical to elucidate how FMDV persists in buffalo populations. In this study, we obtained oropharyngeal (OPF) fluid from naturally infected African buffalo, and characterized the genetic diversity of FMDV. Out of 54 FMDV-positive OPF, 5 were co-infected with SAT1 and SAT2 serotypes. From the five co-infected buffalo, we obtained eighty-nine plaque-purified isolates. Isolates obtained directly from OPF and plaque purification were sequenced using next-generation sequencing (NGS). Phylogenetic analyses of the sequences obtained from recombination-free protein-coding regions revealed a discrepancy in the topology of capsid proteins and non-structural proteins. Despite the high divergence in the capsid phylogeny between SAT1 and SAT2 serotypes, viruses from different serotypes that were collected from the same host had a high genetic similarity in non-structural protein-coding regions P2 and P3, suggesting interserotypic recombination. In two of the SAT1 and SAT2 co-infected buffalo identified at the first passage of viral isolation, the plaque-derived SAT2 genomes were distinctly grouped in two different genotypes. These genotypes were not initially detected with the NGS from the first passage (non-purified) virus isolation sample. In one animal with two SAT2 haplotypes, one plaque-derived chimeric sequence was found. These findings demonstrate within-host evolution through recombination and point mutation contributing to broad viral diversity in the wildlife reservoir. These mechanisms may be critical to FMDV persistence at the individual animal and population levels, and may contribute to the emergence of new viruses that have the ability to spill-over to livestock and other wildlife species.


Assuntos
Coinfecção , Vírus da Febre Aftosa , Febre Aftosa , Animais , Animais Selvagens , Búfalos , Proteínas do Capsídeo/genética , Coinfecção/veterinária , Febre Aftosa/epidemiologia , Quênia , Filogenia , Sorogrupo
14.
Front Vet Sci ; 8: 764837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901251

RESUMO

Porcine Astrovirus (PoAstV) causes mild diarrhea in young pigs and is considered an emerging virus in the swine industry worldwide. PoAstV has high genetic diversity and has been classified into five genetic lineages, PoAstV1-5. In Chile, only human astroviruses have been reported. This study aimed to determine the presence and genetic diversity of PoAstV circulating in intensive pig farms in Chile. Seventeen Chilean intensive swine farms from Valparaíso, Metropolitana, O'Higgins, Ñuble and Araucanía regions were sampled. A selection of oral fluid and fecal material samples from 1-80 days-old pigs were collected and analyzed using next-generation sequencing. The circulation of PoAstV was confirmed in all studied farms. We obtained complete or partial sequences of PoAstV-2 (n = 3), PoAstV-4 (n = 2), and PoAstV-5 (n = 7). In 15 out of 17 farms, we detected more than one lineage co-circulating. Phylogenetic analyses grouped the seven PoAstV-5 strains in a monophyletic cluster, closely related to the United States PoAstV-5 strains. The three PoAstV-2 were located into two separate sub-clusters. PoAstV-4 sequences are also grouped in two different clusters, all related to Japanese strains. Thus, our results indicate that PoAstV circulates in Chile with high frequency and diversity. However, the lack of reference sequences impairs local evolution patterns establishment and regional comparisons. This is the first contribution of PoAstV genomes in Latin America; more studies are needed to understand the diversity and impact of PoAstV on swine health.

15.
Transbound Emerg Dis ; 68(6): 3174-3179, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288514

RESUMO

Influenza A virus (IAV) was a neglected swine pathogen in South America before the 2009 H1N1 pandemic (A(H1N1)pdm2009). The A(H1N1)pdm2009 strain has widely spread among the Chilean swine population and co-circulates with endemic H1N2 and H3N2 viruses. The presence of IAV as a swine pathogen in Chilean swine before the 2009 pandemic is unknown. To understand the IAV in swine prior to 2009, aY retrospective study of samples from pigs affected with respiratory diseases was conducted. Ninety formalin-fixed and paraffin-embedded lung tissues belonging to 21 intensive pig production companies located in five different administrative regions of Chile, collected between 2005 and 2008, were evaluated. The tissues were tested by immunohistochemistry (IHC), identifying that 9 out of 21 farms (42.8%) and 31 out of 90 (34.4%) samples were IAV positive. Only three out of the 31 IHC-positive samples were positive upon RNA extraction and rtRT-PCR analysis. Partial nucleotide sequences were obtained from one sample and characterized as an H3N2 subtype closely related to a human seasonal H3N2 IAVs that circulated globally in the mid-90s. These results indicate that IAV was circulating in swine before 2009 and highlight the value of conducting retrospective studies through genomic strategies to analyse historical samples.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Chile/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/epidemiologia
16.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414349

RESUMO

We report the genome sequences of 12 recombinant foot-and-mouth disease virus isolates from Vietnam. The recombinant strain has a capsid region from an A/Sea-97 strain and a nonstructural segment from an O/ME-SA/PanAsia strain. The isolates were obtained from two outbreak samples collected in June 2017 and 10 subclinical samples collected between 2017 and 2019.

17.
Transbound Emerg Dis ; 68(1): 2-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30945819

RESUMO

In December 2016, low pathogenic avian influenza (LPAI) caused by an H7N6 subtype was confirmed in a grow-out turkey farm located in Valparaiso Region, Chile. Depopulation of exposed animals, zoning, animal movement control and active surveillance were implemented to contain the outbreak. Two weeks later, a second grow-out turkey farm located 70 km north of the first site was also infected by H7N6 LPAI, which subsequently spilled over to one backyard poultry flock. The virus involved in the outbreak shared a close genetic relationship with Chilean aquatic birds' viruses collected in previous years. The A/turkey/Chile/2017(H7N6) LPAI virus belonged to a native South American lineage. Based on the H7 and most of the internal genes' phylogenies, these viruses were also closely related to the ones that caused a highly pathogenic avian influenza outbreak in Chile in 2002. Results from this study help to understand the regional dynamics of influenza outbreaks, highlighting the importance of local native viruses circulating in the natural reservoir hosts.


Assuntos
Surtos de Doenças/veterinária , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Perus , Animais , Chile/epidemiologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia
18.
Front Vet Sci ; 8: 789491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977221

RESUMO

Porcine Circovirus 2 (PCV2) can cause multiple clinical conditions known as porcine circovirus-associated diseases (PCVAD). Before the wide availability of PCV2 vaccines, PCVAD resulted in significant losses to the global swine industry. PCV2's rapid evolutionary dynamics are comparable to single-stranded RNA viruses. Thus, shifts in the dominance and distribution of different genotypes may frequently occur, resulting in the emergence and spread of varying PCV2 genotypes and recombinant strains in swine. This study aims at identifying the PCV2 genotypes currently circulating in Chile. Seven hundred thirty-eight samples were obtained from 21 swine farms between 2020 and 2021. The samples were tested using PCR for species detection and genotyping. Sequencing and phylogenetic analyses were conducted in selected samples. PCV2 was detected in 26.9% of the PCR reactions and 67% of the sampled farms. The genotypes were determined in nine farms, PCV2a in one farm, PCV2b in four, and PCV2d in five, with PCV2b and PCV2d co-circulating in one farm. The phylogenetic analysis of twelve ORF2 sequences obtained (PCV2a = 5; PCV2b = 4; PCV2d = 3) showed a PCV2a Chilean strains monophyletic cluster; closely related to Chilean viruses collected in 2012 and 2013. Of the three different PCV2b sequenced viruses, two viruses were close to the root of the PCV2b group, whereas the remaining one grouped with a South Korean virus. PCV2d sequences were closely related to Asian viruses. A previously reported PCV2a/PCV2d recombinant strain was not detected in this study. Our results suggest the emergence and potential shift to PCV2d genotype in Chilean farms.

19.
Emerg Microbes Infect ; 10(1): 376-383, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33317424

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT-PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred.


Assuntos
COVID-19/veterinária , COVID-19/virologia , Gatos/virologia , Eliminação de Partículas Virais , Adulto , Animais , Chile , Feminino , Genoma Viral , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/fisiologia
20.
Transbound Emerg Dis ; 67(5): 2206-2221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32303117

RESUMO

Quantitative knowledge on the contribution of African buffalo to the epidemiology of foot-and-mouth disease virus (FMDV) in East Africa is lacking, and this information is essential for the design of control programs in the region. The objective of this study was to investigate the epidemiology of FMDV in buffalo, including the role of buffalo in the circulation of FMDV in livestock populations. We collected blood and oropharyngeal fluids from 92 wild buffalo and 98 sympatric cattle in central Kenya and sequenced the virus' VP1 coding region. We show that FMDV has a high seroprevalence in buffalo (~77%) and targeted cattle (~93%). In addition, we recovered 80 FMDV sequences from buffalo, all of which were serotype SAT1 and SAT2, and four serotype O and A sequences from sympatric cattle. Notably, six individual buffalo were co-infected with both SAT1 and SAT2. Amongst sympatric buffalo and cattle, the fact that no SAT1 or 2 sequences were found in cattle suggests that transmission of FMDV from buffalo to sympatric cattle is rare. Similarly, there was no evidence that serotype O and A sequences found in cattle were transmitted to buffalo. However, viruses from FMDV outbreaks in cattle elsewhere in Kenya were closely related to SAT1 and SAT2 viruses found in buffalo in this study, suggesting that FMDV in cattle and buffalo do not constitute independently evolving populations. We also show that fine-scale geographic features, such as rivers, influence the circulation of FMDV in buffalo and that social segregation amongst sympatric herds may limit between-herd transmission. These results significantly advance our understanding of the ecology and molecular epidemiology of FMDV at wildlife-livestock interfaces in East Africa and will help to inform the design of control and surveillance strategies for this disease in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA