Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(6): 450-460.e6, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36893754

RESUMO

Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Animais , Urodelos/genética , Pequeno RNA não Traduzido/metabolismo , Músculo Esquelético/metabolismo , Ribossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Extremidades/fisiologia
2.
Nat Commun ; 8(1): 2286, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273779

RESUMO

Salamanders exhibit an extraordinary ability among vertebrates to regenerate complex body parts. However, scarce genomic resources have limited our understanding of regeneration in adult salamanders. Here, we present the ~20 Gb genome and transcriptome of the Iberian ribbed newt Pleurodeles waltl, a tractable species suitable for laboratory research. We find that embryonic stem cell-specific miRNAs mir-93b and mir-427/430/302, as well as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded dramatically in the Pleurodeles waltl genome and are co-expressed during limb regeneration. Moreover, we find that a family of salamander methyltransferases is expressed specifically in adult appendages. Using CRISPR/Cas9 technology to perturb transcription factors, we demonstrate that, unlike the axolotl, Pax3 is present and necessary for development and that contrary to mammals, muscle regeneration is normal without functional Pax7 gene. Our data provide a foundation for comparative genomic studies that generate models for the uneven distribution of regenerative capacities among vertebrates.


Assuntos
Extremidades/fisiologia , Genoma/genética , MicroRNAs/genética , Pleurodeles/genética , Regeneração/genética , Ambystoma mexicanum/genética , Animais , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis/genética , Células-Tronco Embrionárias/metabolismo , Edição de Genes , Perfilação da Expressão Gênica , Genômica , Músculo Esquelético/fisiologia , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Proto-Oncogenes/genética , Regeneração/fisiologia
3.
Dev Cell ; 40(6): 608-617.e6, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28350991

RESUMO

Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Ciclo Celular/efeitos dos fármacos , Desdiferenciação Celular/efeitos dos fármacos , Extremidades/fisiologia , Células Musculares/citologia , Peptídeo Hidrolases/farmacologia , Regeneração/efeitos dos fármacos , Salamandridae/fisiologia , Animais , Bovinos , Fibrinolisina/farmacologia , Células HEK293 , Humanos , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/farmacologia , Fase S/efeitos dos fármacos , Soro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Trombina/farmacologia
4.
Development ; 142(16): 2752-63, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26209644

RESUMO

Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.


Assuntos
Actinas/metabolismo , Nadadeiras de Animais/fisiologia , Proliferação de Células/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Nadadeiras de Animais/metabolismo , Animais , Contagem de Células , Citoesqueleto/fisiologia , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Microscopia de Fluorescência , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Sinalização YAP , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA