RESUMO
We present a flora and fauna dataset for the Mira-Mataje binational basins. This is an area shared between southwestern Colombia and northwestern Ecuador, where both the Chocó and Tropical Andes biodiversity hotspots converge. We systematized data from 120 sources in the Darwin Core Archive (DwC-A) standard and geospatial vector data format for geographic information systems (GIS) (shapefiles). Sources included natural history museums, published literature, and citizen science repositories across 13 countries. The resulting database has 33,460 records from 6,821 species, of which 540 have been recorded as endemic, and 612 as threatened. The diversity represented in the dataset is equivalent to 10% of the total plant species and 26% of the total terrestrial vertebrate species in both hotspots. The dataset can be used to estimate and compare biodiversity patterns with environmental parameters and provide value to ecosystems, ecoregions, and protected areas. The dataset is a baseline for future assessments of biodiversity in the face of environmental degradation, climate change, and accelerated extinction processes.
Assuntos
Biodiversidade , Plantas , Equador , Animais , Colômbia , Vertebrados , Sistemas de Informação Geográfica , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais , Clima TropicalRESUMO
BACKGROUND: The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. RESULTS: Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. CONCLUSIONS: Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions-among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma.
Assuntos
Filogeografia , Roedores/classificação , Roedores/genética , Animais , Evolução Biológica , Ecossistema , Filogenia , Roedores/fisiologia , América do SulRESUMO
We describe a new species of Noblella from wet, montane forest at the Sardinayacu Lake Complex between 1600-1920 m elevation in Morona Santiago, Ecuador. The new species differs from congeners in having three phalanges in the fourth finger, finely tuberculate skin on the dorsal body, pointed digital tips with marginal grooves on the fingers, a yellow to pale yellow venter, and a reduced facial mask not extending beyond the arm. The new species also lacks the pair of inguinal spots on the dorsal flanks of most congeners. Since its discovery in 1976, N. lochites has remained poorly known. We describe variation, color in life, and basic ecology of N. lochites based on a large series from the Cordillera del Condor.