Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 168: 149-161, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254492

RESUMO

Glucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose. S64Y impedes formation of a turn structure that is characteristic for the inactive enzyme conformation, and complex formation with compound A induces collision with the large domain. G68V evokes close contact of connecting region I and helix α13 with RO-28-1675 and compound A. Both mutants showed higher activity than the wild-type at low glucose and were susceptible to further activation by FBPase-2 and RO-28-1675, alone and additively. G68V was less active than S64Y, but was activatable by compound A. In contrast, compound A inhibited S64Y, and this effect was even more pronounced in combination with mannoheptulose. Mutant and wild-type GK showed comparable thermal stability and intracellular lifetimes. A GK-6-phosphofructo-2-kinase (PFK-2)/FBPase-2 complex predicted by in silico protein-protein docking demonstrated possible binding of the FBPase-2 domain near the active site of GK. In summary, activating mutations within the allosteric site of GK do not preclude binding of chemical activators (GKAs), but can alter their action into inhibition. Our postulated GK-PFK-2/FBPase-2 complex represents the endogenous principle of activation by substrate channelling which permits binding of other small molecules and proteins.


Assuntos
Glucoquinase/metabolismo , Células Secretoras de Insulina/enzimologia , Manoeptulose/metabolismo , Proteínas Mutantes/metabolismo , Fosfofrutoquinase-2/metabolismo , Tiazóis/metabolismo , Sítio Alostérico , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Glucoquinase/química , Glucoquinase/genética , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Manoeptulose/química , Camundongos , Fosfofrutoquinase-2/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Tiazóis/química , Transfecção
2.
Curr Probl Diagn Radiol ; 47(4): 225-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28823581

RESUMO

OBJECTIVE: Computed tomography (CT)-based analyses of mummies have been performed since the 1970s but, until now, no systematic summary of PubMed®-published data has been performed. The aim was to perform a systematic review of previously published cases and summarize artificial changes and detectable paleopathologies. MATERIALS AND METHODS: Data collection from publications on CT analyses of mummies from ancient Egypt until the Greco-Roman period (up to 700 ad) from the PubMed® database (1973-2013) and descriptive data analysis. RESULTS: Forty-seven publications on CT-based analyses have been identified, which reported on 189 mummies. Commonly reported artificial changes were destruction of the nasal bone and left-sided lateral abdominal incision for removal of inner organs. Dental and jaw pathologies (n = 42), chronic degenerative changes of skeletal bones (n = 39), and arteriosclerosis (n = 36) were reported in a subfraction of cases while traumatic fractures (n = 16) and other diseases were less often identified. The cause of death was rarely detectable by CT, but a cut through the throat, arrowheads, and bone fracture could be verified by CT. CONCLUSION: Standards in documentation of CT devices have changed over the past 40 years, and insufficient documentation limits the interpretation of findings. In ancient Egyptian mummies, most organs have been removed during the mummification process while teeth and jaws are often preserved. Dental pathologies were frequent in ancient Egypt and can indicate personal circumstances and diet. The cause of death is rarely verifiable, but CT scan could be the clue. Although well known in Egyptian mummies, artificial changes may lead to misinterpretation of CT findings.


Assuntos
Múmias , Tomografia Computadorizada por Raios X/métodos , Egito , Humanos
3.
J Biol Chem ; 288(50): 35824-39, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24187134

RESUMO

Glucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins. A protein sequence containing a full-length ubiquitin-like domain was identified to interact with glucokinase. Mammalian two-hybrid and fluorescence resonance energy transfer analyses confirmed the interaction between glucokinase and the ubiquitin-like domain in insulin-secreting MIN6 cells and revealed the highest binding affinity at low glucose. Overexpression of parkin, an ubiquitin E3 ligase exhibiting an ubiquitin-like domain with high homology to the identified, diminished insulin secretion in MIN6 cells but had only some effect on glucokinase activity. Overexpression of the elucidated ubiquitin-like domain or midnolin, containing exactly this ubiquitin-like domain, significantly reduced both intrinsic glucokinase activity and glucose-induced insulin secretion. Midnolin has been to date classified as a nucleolar protein regulating mouse development. However, we could not confirm localization of midnolin in nucleoli. Fluorescence microscopy analyses revealed localization of midnolin in nucleus and cytoplasm and co-localization with glucokinase in pancreatic beta cells. In addition we could show that midnolin gene expression in pancreatic islets is up-regulated at low glucose and that the midnolin protein is highly expressed in pancreatic beta cells and also in liver, muscle, and brain of the adult mouse and cell lines of human and rat origin. Thus, the results of our study suggest that midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells.


Assuntos
Glucoquinase/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ubiquitina/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Ratos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
4.
Biochem J ; 456(2): 173-84, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24028089

RESUMO

The ubiquitin-proteasome system is important to maintain pancreatic ß-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary ß-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic ß-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.


Assuntos
Glucoquinase/metabolismo , Células Secretoras de Insulina/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Células COS , Chlorocebus aethiops , Cicloeximida/farmacologia , Glucose/fisiologia , Hepatócitos/enzimologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Leupeptinas/farmacologia , Camundongos , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica , Inibidores da Síntese de Proteínas/farmacologia , Proteólise , Análise de Célula Única , Ubiquitina/metabolismo
5.
Biochem Pharmacol ; 83(9): 1300-6, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22305745

RESUMO

The glucose phosphorylating enzyme glucokinase plays a crucial role in stimulus-secretion coupling in pancreatic beta cells and in glucose metabolism in liver. Glucose mediates a shift of the enzyme's conformational equilibrium towards the closed conformation with high glucokinase activity. Further activation of glucokinase is endogenously mediated by interaction with the bisphosphatase domain (FBPase-2) of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) and can be achieved also by a new class of glucokinase activators (GKA), chemical compounds that might be suited for type 2 diabetes therapy. While FBPase-2 increased only the phosphorylating capacity of glucokinase, the GKA LY2121260 augmented in addition the affinity of glucokinase for glucose. PFK-2/FBPase-2 but not LY2121260 antagonized glucokinase inhibition by the competitive glucokinase inhibitor mannoheptulose at increasing glucose concentrations. Interestingly, an additive activation of glucokinase was observed by use of recombinant FBPase-2 together with LY2121260. This new crucial observation could be confirmed with cellular extracts containing the glucokinase and PFK-2/FBPase-2 proteins. Addition of LY2121260 resulted in a further significant increase in glucokinase activity. Because the glucokinase-PFK-2/FBPase-2 complex was conserved under LY2121260 treatment as shown by size exclusion chromatography a concerted action of both activators towards the closed active glucokinase conformation can be anticipated. Thus, as a result of the additive effect of both activators on glucokinase activity, the largest increase of glucose-induced insulin secretion was observed in the combined presence of PFK-2/FBPase-2 and LY2121260.


Assuntos
Glucoquinase/metabolismo , Fosfofrutoquinase-2/metabolismo , Sulfonas/farmacologia , Tiazóis/farmacologia , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucoquinase/antagonistas & inibidores , Glucose/farmacologia , Heptoses/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Manoeptulose/farmacologia , Fosfofrutoquinase-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA