Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Integr Environ Assess Manag ; 20(2): 367-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084033

RESUMO

The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Modelos Climáticos , Ecossistema , Teorema de Bayes , Mudança Climática , Ecotoxicologia , Medição de Risco
2.
Integr Environ Assess Manag ; 20(2): 401-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018499

RESUMO

An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay-Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975-2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30-year periods. It was found that both climate-related and catchment-related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs. Integr Environ Assess Manag 2024;20:401-418. © 2023 Norwegian Institute for Water Research and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Ecossistema , Mudança Climática , Teorema de Bayes , Concentração de Íons de Hidrogênio , Água do Mar , Austrália
3.
Integr Environ Assess Manag ; 20(2): 359-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124219

RESUMO

The impacts of global climate change are not yet well integrated with the estimates of the impacts of chemicals on the environment. This is evidenced by the lack of consideration in national or international reports that evaluate the impacts of climate change and chemicals on ecosystems and the relatively few peer-reviewed publications that have focused on this interaction. In response, a 2011 Pellston Workshop® was held on this issue and resulted in seven publications in Environmental Toxicology and Chemistry. Yet, these publications did not move the field toward climate change and chemicals as important factors together in research or policy-making. Here, we summarize the outcomes of a second Pellston Workshop® on this topic held in 2022 that included climate scientists, environmental toxicologists, chemists, and ecological risk assessors from 14 countries and various sectors. Participants were charged with assessing where climate models can be applied to evaluating potential exposure and ecological effects at geographical and temporal scales suitable for ecological risk assessment, and thereby be incorporated into adaptive risk management strategies. We highlight results from the workshop's five publications included in the special series "Incorporating Global Climate Change into Ecological Risk Assessments: Strategies, Methods and Examples." We end this summary with the overall conclusions and recommendations from participants. Integr Environ Assess Manag 2024;20:359-366. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/análise , Ecossistema , Modelos Climáticos , Mudança Climática , Ecotoxicologia , Medição de Risco/métodos , Gestão de Riscos
4.
Environ Toxicol Chem ; 42(12): 2564-2579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671843

RESUMO

New tools and refined frameworks for identifying and regulating endocrine-disrupting chemicals (EDCs) are being developed as our scientific understanding of how they work advances. Although focus has largely been on organic chemicals, the potential for metals to act as EDCs in aquatic systems is receiving increasing attention. Metal interactions with the endocrine system are complicated because some metals are essential to physiological systems, including the endocrine system, and nonessential metals can have similar physiochemical attributes that allow substitution into or interference with these systems. Consequently, elevated metal exposure could potentially cause endocrine disruption (ED) but can also cause indirect effects on the endocrine system via multiple pathways or elicit physiologically appropriate compensatory endocrine-mediated responses (endocrine modulation). These latter two effects can be confused with, but are clearly not, ED. In the present study, we provide several case studies that exemplify the challenges encountered in evaluating the endocrine-disrupting (ED) potential of metals, followed by recommendations on how to meet them. Given that metals have multiple modes of action (MOAs), we recommend that assessments use metal-specific adverse outcome pathway networks to ensure that accurate causal links are made between MOAs and effects on the endocrine system. We recommend more focus on establishing molecular initiating events for chronic metal toxicity because these are poorly understood and would reduce uncertainty regarding the potential for metals to be EDCs. Finally, more generalized MOAs such as oxidative stress could be involved in metal interactions with the endocrine system, and we suggest it may be experimentally efficient to evaluate these MOAs when ED is inferred. These experiments, however, must provide explicit linkage to the ED endpoints of interest. Environ Toxicol Chem 2023;42:2564-2579. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Organismos Aquáticos , Disruptores Endócrinos , Ecotoxicologia , Disruptores Endócrinos/análise , Metais/toxicidade , Metais/metabolismo , Sistema Endócrino
5.
Environ Toxicol Chem ; 42(11): 2350-2357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431894

RESUMO

Maternal transfer of selenium (Se) to developing fish eggs during vitellogenesis can cause larval deformity and mortality. Previous studies have shown wide variation among fish species in both the magnitude of maternal transfer (exposure) and the egg Se concentration causing effects (sensitivity). We studied maternal transfer and effects of Se on early life stage development, survival, and growth of redside shiner (Richardsonius balteatus), a small-bodied cyprinid that has been reported to have relatively high ovary:muscle Se concentration ratios. Gametes were collected from lentic areas in southeast British Columbia (Canada) with a range of dietary Se concentrations related to weathering of waste rock from coal mining. Eggs were fertilized and reared in the laboratory from hatch to the onset of exogenous feeding. Larvae were assessed for survival, length, weight, Se-characteristic deformities, and edema. Eggs from a total of 56 females were collected, with egg Se concentrations from 0.7 to 28 mg/kg dry weight. Maternal transfer varied among sites, with egg:muscle Se concentration ratios ranging from <1 to >4. We also found that sampling residual ovaries can overestimate Se concentrations in ripe eggs by up to a factor of 5.7. A correlation between larval weight and egg Se concentration was identified, although the relationship was weak (r2 < 0.1) and appeared to be a site effect. No other relationships were observed between larval endpoints and egg Se concentrations up to the highest concentration tested, indicating that the effects threshold for this species may be >28 mg/kg dry weight in eggs. These data indicate that redside shiner is less sensitive to maternally transferred Se than most other tested fish species. Environ Toxicol Chem 2023;42:2350-2357. © 2023 SETAC.


Assuntos
Cyprinidae , Selênio , Poluentes Químicos da Água , Animais , Feminino , Selênio/toxicidade , Selênio/análise , Poluentes Químicos da Água/análise , Larva , Colúmbia Britânica
6.
Environ Toxicol Chem ; 42(6): 1386-1400, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988398

RESUMO

We developed multiple linear regression (MLR) models for predicting iron (Fe) toxicity to aquatic organisms for use in deriving site-specific water quality guidelines (WQGs). The effects of dissolved organic carbon (DOC), hardness, and pH on Fe toxicity to three representative taxa (Ceriodaphnia dubia, Pimephales promelas, and Raphidocelis subcapitata) were evaluated. Both DOC and pH were identified as toxicity-modifying factors (TMFs) for P. promelas and R. subcapitata, whereas only DOC was a TMF for C. dubia. The MLR models based on effective concentration 10% and 20% values were developed and performed reasonably well, with adjusted R2 of 0.68-0.89 across all species and statistical endpoints. Differences among species in the MLR models precluded development of a pooled model. Instead, the species-specific models were assumed to be representative of invertebrates, fish, and algae and were applied accordingly to normalize toxicity data. The species sensitivity distribution (SSD) included standard laboratory toxicity data and effects data from mesocosm experiments on aquatic insects, with aquatic insects being the predominant taxa in the lowest quartile of the SSD. Using the European Union approach for deriving WQGs, application of MLR models to this SSD resulted in WQGs ranging from 114 to 765 µg l-1 Fe across the TMF conditions evaluated (DOC: 0.5-10 mg l-1 ; pH: 6.0-8.4), with slightly higher WQGs (199-910 µg l-1 ) derived using the US Environmental Protection Agency (USEPA) methodology. An important uncertainty in these derivations is the applicability of the C. dubia MLR model (no pH parameter) to aquatic insects, and understanding the pH sensitivity of aquatic insects to Fe toxicity is a research priority. An Excel-based tool for calculating Fe WQGs using both European Union and USEPA approaches across a range of TMF conditions is provided. Environ Toxicol Chem 2023;42:1386-1400. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Modelos Lineares , Água Doce/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Ferro/toxicidade
7.
Environ Toxicol Chem ; 42(2): 393-413, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398855

RESUMO

Multiple linear regression (MLR) models for predicting zinc (Zn) toxicity to freshwater organisms were developed based on three toxicity-modifying factors: dissolved organic carbon (DOC), hardness, and pH. Species-specific, stepwise MLR models were developed to predict acute Zn toxicity to four invertebrates and two fish, and chronic toxicity to three invertebrates, a fish, and a green alga. Stepwise regression analyses found that hardness had the most consistent influence on Zn toxicity among species, whereas DOC and pH had a variable influence. Pooled acute and chronic MLR models were also developed, and a k-fold cross-validation was used to evaluate the fit and predictive ability of the pooled MLR models. The pooled MLR models and an updated Zn biotic ligand model (BLM) performed similarly based on (1) R2 , (2) the percentage of effect concentration (ECx) predictions within a factor of 2.0 of observed ECx, and (3) residuals of observed/predicted ECx versus observed ECx, DOC, hardness, and pH. Although fit of the pooled models to species-specific toxicity data differed among species, species-specific differences were consistent between the BLM and MLR models. Consistency in the performance of the two models across species indicates that additional terms, beyond DOC, hardness, and pH, included in the BLM do not help explain the differences among species. The pooled acute and chronic MLR models and BLM both performed better than the US Environmental Protection Agency's existing hardness-based model. We therefore conclude that both MLR models and the BLM provide an improvement over the existing hardness-only models and that either could be used for deriving ambient water quality criteria. Environ Toxicol Chem 2023;42:393-413. © 2022 SETAC.


Assuntos
Poluentes Químicos da Água , Animais , Modelos Lineares , Ligantes , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água Doce/química , Organismos Aquáticos , Zinco/toxicidade , Zinco/análise , Cobre/toxicidade
8.
Integr Environ Assess Manag ; 19(1): 24-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35656908

RESUMO

Effects-based methods (EBMs) are considered part of a more integrative strategy for regulating substances of concern under the European Union Water Framework Directive. In general, EBMs have been demonstrated as useful indicators of effects on biota, although links to population and community-level effects are sometimes uncertain. When EBMs are sufficiently specific and sensitive, and links between measured endpoints and apical or higher level effects are established, they can be a useful tool in assessing effects from a specific toxicant or class of toxicants. This is particularly valuable for toxicants that are difficult to measure and for assessing the effects of toxicant mixtures. This paper evaluates 12 EBMs that have been proposed for potential use in the assessment of metals. Each EBM was evaluated with respect to metal specificity and sensitivity, sensitivity to other classes of toxicants, and the strength of the relationship between EBM endpoints and effects observed at the whole organism or population levels of biological organization. The evaluation concluded that none of the EBMs evaluated meet all three criteria of being sensitive to metals, insensitive to other classes of toxicants, and a strong indicator of effects at the whole organism or population level. Given the lack of suitable EBMs for metals, we recommended that the continued development of mixture biotic ligand models (mBLMs) may be the most effective way to achieve the goal of a more holistic approach to regulating metals in aquatic ecosystems. Given the need to further develop and validate mBLMs, we suggest an interim weight-of-evidence approach that includes mBLMs, macroinvertebrate community bioassessment, and measurement of metals in key macroinvertebrate species. This approach provides a near-term solution and simultaneously generates data needed for the refinement and validation of mBLMs. Once validated, it should be possible to rely primarily on mBLMs as an alternative to EBMs for metals. Integr Environ Assess Manag 2023;19:24-31.  © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Meio Ambiente , Ecotoxicologia , União Europeia , Monitoramento Ambiental , Medição de Risco/métodos
9.
Environ Toxicol Chem ; 41(12): 2911-2927, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148934

RESUMO

In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Rotas de Resultados Adversos , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/metabolismo , Peixes , Vertebrados/metabolismo , Anfíbios , Sódio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
10.
Sci Total Environ ; 843: 157032, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779728

RESUMO

We investigated how natural dissolved organic matter (DOM) of the Rio Negro (Amazon) affects acute copper (Cu) toxicity to local fish: the cardinal tetra (Paracheirodon axelrodi) and the dwarf cichlid (Apistogramma agassizii). It is established that Cu2+ complexation with DOM decreases Cu bioavailability (and thus toxicity) to aquatic organisms, as conceptualized by the Biotic Ligand Model (BLM). However, we also know that Rio Negro's DOM can interact with fish gills and have a beneficial effect on Na+ homeostasis, the main target of acute Cu toxicity in freshwater animals. We aimed to tease apart these potential protective effects of DOM against Cu-induced Na+ imbalances in fish. In the laboratory, we acclimated fish to Rio Negro water (10 mg L-1 DOC) and to a low-DOM water (1.4 mg L-1 DOC) with similar ion composition and pH (5.9). We measured 3-h Cu uptake in gills and unidirectional and net Na+ physiological fluxes across a range of Cu concentrations in both waters. Various DOM pre-acclimation times (0, 1 and 5 days) were evaluated in experiments with P. axelrodi. Copper exposure led to similar levels of net Na+ loss in the two fish, but with distinct effects on Na+ influx and efflux rates reflecting their different ionoregulation strategies. Rio Negro DOM protected against Cu uptake and toxicity in the two fish species. Both Cu uptake in fish gills and Na+ regulation disturbances were relatively well predicted by the modelled aqueous free Cu2+ ion concentration. These findings suggest that protection by DOM occurs mainly from Cu complexation under the tested conditions. The prevalence of this geochemical-type protection over a physiological-type protection agrees with the BLM conceptual framework, supporting the use of the BLM to assess the risk of Cu in these Amazonian waters.


Assuntos
Characidae , Ciclídeos , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Matéria Orgânica Dissolvida , Íons , Sódio , Água/química , Poluentes Químicos da Água/toxicidade
11.
Environ Toxicol Chem ; 40(6): 1649-1661, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590908

RESUMO

An increasing number of metal bioavailability models are available for use in setting regulations and conducting risk assessments in aquatic systems. Selection of the most appropriate model is dependent on the user's needs but will always benefit from an objective, comparative assessment of the performance of available models. In 2017, an expert workshop developed procedures for assessing metal bioavailability models. The present study applies these procedures to evaluate the performance of biotic ligand models (BLMs) and multiple linear regression (MLR) models for copper. We find that the procedures recommended by the expert workshop generally provide a robust series of metrics for evaluating model performance. However, we recommend some modifications to the analysis of model residuals because the current method is insensitive to relatively large differences in residual patterns when comparing models. We also provide clarification on details of the evaluation procedure which, if not applied correctly, could mischaracterize model performance. We found that acute Cu MLR and BLM performances are quite comparable, though there are differences in performance on a species-specific basis and in the resulting water quality criteria as a function of water chemistry. In contrast, the chronic Cu MLR performed distinctly better than the BLM. Observed differences in performance are due to the smaller effects of hardness and pH on chronic Cu toxicity compared to acute Cu toxicity. These differences are captured in the chronic MLR model but not the chronic BLM, which only adjusts for differences in organism sensitivity. In general, we continue to recommend concurrent development of both modeling approaches because they provide useful comparative insights into the strengths, limitations, and predictive capabilities of each model. Environ Toxicol Chem 2021;40:1649-1661. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Disponibilidade Biológica , Cobre/toxicidade , Água Doce/química , Ligantes , Modelos Lineares , Poluentes Químicos da Água/toxicidade
12.
Environ Toxicol Chem ; 40(2): 380-389, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33136298

RESUMO

Selenium (Se) toxicity to fish is primarily manifested via maternal transfer to the eggs, which may result in adverse effects on larval survival and development. The present study assessed the effects of egg Se concentrations derived via maternal transfer on early life-stage development, survival, and growth of Arctic grayling (Thymallus arcticus), a salmonid species not previously assessed for Se sensitivity. Fish gametes were collected from 4 streams in Alaska known to exhibit a range of egg Se concentrations. Eggs were fertilized and reared in the laboratory from hatch through post-swim-up. Larvae were assessed for survival, length, and weight, as well as deformities (skeletal, craniofacial, fin-fold) and edema based on a graduated severity index. Eggs from a total of 47 females were collected, with egg Se concentrations ranging from 3.3 to 33.9 mg kg-1 dry weight. No relationships were observed between larval endpoints evaluated and parent females' egg, muscle, or whole-body Se concentrations. Therefore, Se 10% effective concentrations (EC10s) were defined as the maximum measured Se concentrations: >33.9, >17.6, and >19.7 mg kg-1 dry weight for eggs, muscle, and whole-body tissue, respectively. Collectively, these data indicate that Arctic grayling are relatively insensitive to maternally transferred Se compared to other fish species. Environ Toxicol Chem 2021;40:380-389. © 2020 SETAC.


Assuntos
Salmonidae , Selênio , Poluentes Químicos da Água , Animais , Feminino , Fertilização , Larva , Selênio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Aquat Toxicol ; 226: 105568, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32791376

RESUMO

An emerging Multi-Ion Toxicity (MIT) model for assessment of environmental salt pollution is based on the premise that major ion toxicity to aquatic organisms is related to a critical disturbance of the trans-epithelial potential across the gills (ΔTEP), which can be predicted by electrochemical theory. However, the model has never been evaluated physiologically. We directly tested key assumptions by examining the individual effects of eight different salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl, K2SO4, CaCl2, and CaSO4) on measured TEP in three different fish species (fathead minnow, Pimephales promelas = FHM; channel catfish, Ictalurus punctatus = CC; bluegill, Lepomis macrochirus = BG). A geometric concentration series based on previously reported 96-h LC50 values for FHM was used. All salts caused concentration-dependent increases in TEP to less negative/more positive values in a pattern well-described by the Michaelis-Menten equation. The ΔTEP responses for different salts were similar to one another within each species when concentrations were expressed as a percentage of the FHM LC50. A plateau was reached at or before 100 % of the LC50 where the ΔTEP values were remarkably consistent, with only 1.4 to 2.2-fold variation. This relative uniformity in the ΔTEP responses contrasts with 28-fold variation in salt concentration (in mmol L-1), 9.6-fold in total dissolved solids, and 7.9-fold in conductivity at the LC50. The Michaelis-Menten Km values (salt concentrations causing 50 % of the ΔTEPmax) were positively related to the 96-h LC50 values. ΔTEP responses were not a direct effect of osmolarity in all species and were related to specific cation rather than specific anion concentrations in FHM. These responses were stable for up to 24 h in CC. The results provide strong physiological support for the assumptions of the MIT model, are coherent with electrochemical theory, and point to areas for future research.


Assuntos
Cyprinidae/fisiologia , Epitélio/fisiologia , Brânquias/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Perciformes/fisiologia , Sais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Eletrodos , Brânquias/fisiologia , Concentração Osmolar
14.
Sci Total Environ ; 748: 141349, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818889

RESUMO

The Amazon basin contains more than 20% of the world's freshwater fishes, many of ecological and economical importance. An increase in temperature of 2.2 to 7 °C is predicted to occur within the next century in the worst-case scenario of climate change predictions, which will likely be associated with an increase in the prevalence and duration of reduced water oxygen levels (hypoxia). Furthermore, there is an increasing frequency of heat waves in the Amazon basin, which exacerbates issues related to temperature and hypoxia. Increases in temperature and hypoxia both constrain an organism's ability to supply oxygen to metabolizing tissues, thus the ability to cope with thermal and hypoxic stress may be correlated. Here, we reveal a positive correlation between acute thermal tolerance and acute hypoxia tolerance amongst 37 Amazonian fish species at the current river temperatures of 28-31 °C. The effects of long-term (10 days or 4 weeks) increases in temperature were investigated in a subset of 13 species and demonstrated that 2 species failed to acclimate and survive at 33 °C, 9 species failed at 35 °C, and only 2 species survived up to 35 °C. Of those that survived long-term exposure to 33 or 35 °C, the majority of the species demonstrated only an improvement in acute thermal tolerance. In contrast, hypoxia tolerance was reduced following acute- and long-term exposure to 33, 35 or 37 °C in all species investigated. The results of this study suggest that many of the fish species that inhabit the Amazon may be at risk during both short- and long-term temperature increases and these risks are exacerbated by the associated environmental hypoxia.


Assuntos
Aclimatação , Peixes , Animais , Mudança Climática , Hipóxia , Temperatura
15.
Environ Toxicol Chem ; 39(9): 1724-1736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32503077

RESUMO

Multiple linear regression (MLR) models for predicting chronic aluminum toxicity to a cladoceran (Ceriodaphnia dubia) and a fish (Pimephales promelas) as a function of 3 toxicity-modifying factors (TMFs)-dissolved organic carbon (DOC), pH, and hardness-have been published previously. However, the range over which data for these TMFs were available was somewhat limited. To address this limitation, additional chronic toxicity tests with these species were subsequently conducted to expand the DOC range up to 12 mg/L, the pH range up to 8.7, and the hardness range up to 428 mg/L. The additional toxicity data were used to update the chronic MLR models. The adjusted R2 for the C. dubia 20% effect concentration (EC20) model increased from 0.71 to 0.92 with the additional toxicity data, and the predicted R2 increased from 0.57 to 0.89. For P. promelas, the adjusted R2 increased from 0.87 to 0.92 and the predicted R2 increased from 0.72 to 0.87. The high predicted R2 relative to the adjusted R2 indicates that the models for both species are not overly parameterized. When data for C. dubia and P. promelas were pooled, the adjusted R2 values were comparable to the species-specific models (0.90 and 0.88 for C. dubia and P. promelas, respectively). This indicates that chronic aluminum EC20s for C. dubia and P. promelas respond similarly to variation in DOC, pH, and hardness. Overall, the pooled model predicted EC20s that were within a factor of 2 of observed in 100% of the C. dubia tests and 94% of the P. promelas tests. Environ Toxicol Chem 2020;39:1724-1736. © 2020 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cyprinidae/metabolismo , Água Doce/química , Guias como Assunto , Testes de Toxicidade Crônica , Qualidade da Água , Animais , Concentração de Íons de Hidrogênio , Modelos Lineares , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
16.
Integr Environ Assess Manag ; 16(6): 983-997, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32543042

RESUMO

Dissolved Ni concentrations inhibiting the growth of juvenile great pond snails (Lymnaea stagnalis) have been documented to vary from about 1 to 200 µg L-1 Ni. This variability makes L. stagnalis either a moderately sensitive or the most sensitive freshwater species to chronic Ni exposure tested to date. Given the role of sensitive species in environmental risk assessment frameworks, it is particularly important to understand this variability, i.e., to characterize the factors that modulate Ni toxicity and that may confound toxicity test outcomes when uncontrolled. In the present study, we tested if this variability was due to analytical (growth calculation: biomass versus growth rate), environmental (water quality), lab-specific practices, and/or snail population differences among earlier studies. Specifically, we reanalyzed previously published Ni toxicity data and conducted additional measurements of Ni aqueous speciation, short-term Ni uptake, and chronic Ni toxicity with test waters and snail cultures used in previous studies. Corrections for Ni bioavailability and growth calculations explained a large degree of variability in the published literature. However, a residual 16-fold difference remained puzzling between 2 studies: Niyogi et al. (2014) (low ECxs) and Crémazy et al. (2018) (high ECxs). Indeed, differences in metal bioavailability due to water chemistry, lab-specific practices, and snail population sensitivity could not explain the large variation in Ni toxicity in these 2 very similar studies. Other potentially important toxicity-modifying factors were not directly evaluated in the present work: test duration, diet, snail holding conditions, and snail age at onset of testing. The present analysis highlights the need for further studies to elucidate 1) the mechanisms of growth inhibition in Ni-exposed L. stagnalis and 2) the important abiotic and biotic factors affecting this biological response. Until these processes are understood, substantial uncertainties will remain about inclusion of this species in Ni environmental risk assessment. Integr Environ Assess Manag 2020;16:983-997. © 2020 SETAC.


Assuntos
Níquel , Poluentes Químicos da Água , Animais , Água Doce , Lymnaea , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Qualidade da Água
17.
Environ Toxicol Chem ; 39(1): 85-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880833

RESUMO

Recently, there has been renewed interest in the development and use of empirical models to predict metal bioavailability and derive protective values for aquatic life. However, there is considerable variability in the conceptual and statistical approaches with which these models have been developed. In the present study, we review case studies of empirical bioavailability model development, evaluating and making recommendations on key issues, including species selection, identifying toxicity-modifying factors (TMFs) and the appropriate environmental range of these factors, use of existing toxicity data sets and experimental design for developing new data sets, statistical considerations in deriving species-specific and pooled bioavailability models, and normalization of species sensitivity distributions using these models. We recommend that TMFs be identified from a combination of available chemical speciation and toxicity data and statistical evaluations of their relationships to toxicity. Experimental designs for new toxicity data must be sufficiently robust to detect nonlinear responses to TMFs and should encompass a large fraction (e.g., 90%) of the TMF range. Model development should involve a rigorous use of both visual plotting and statistical techniques to evaluate data fit. When data allow, we recommend using a simple linear model structure and developing pooled models rather than retaining multiple taxa-specific models. We conclude that empirical bioavailability models often have similar predictive capabilities compared to mechanistic models and can provide a relatively simple, transparent tool for predicting the effects of TMFs on metal bioavailability to achieve desired environmental management goals. Environ Toxicol Chem 2019;39:85-100. © 2019 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Metais/metabolismo , Modelos Biológicos , Poluentes Químicos da Água/metabolismo , Animais , Organismos Aquáticos/metabolismo , Disponibilidade Biológica , Modelos Lineares , Metais/toxicidade , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
18.
Conserv Physiol ; 7(1): coz060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687141

RESUMO

Lake Magadi, Kenya, is one of the most extreme aquatic environments on Earth (pH~10, anoxic to hyperoxic, high temperatures). Recently, increased water demand and siltation have threatened the viable hot springs near the margins of the lake where Alcolapia grahami, the only fish surviving in the lake, live. These Lake Magadi tilapia largely depend on nitrogen-rich cyanobacteria for food and are 100% ureotelic. Their exceptionally high aerobic metabolic rate, together with their emaciated appearance, suggests that they are energy-limited. Therefore, we hypothesized that during food deprivation, Magadi tilapia would economize their energy expenditure and reduce metabolic rate, aerobic performance and urea-N excretion. Surprisingly, during a 5-day fasting period, routine metabolic rates increased and swimming performance (critical swimming speed) was not affected. Urea-N excretion remained stable despite the lack of their N-rich food source. Their nitrogen use switched to endogenous sources as liver and muscle protein levels decreased after a 5-day fast, indicating proteolysis. Additionally, fish relied on carbohydrates with lowered muscle glycogen levels, but there were no signs indicating use of lipid stores. Gene expression of gill and gut urea transporters were transiently reduced as were gill rhesus glycoprotein Rhbg and Rhcg-2. The reduction in gill glutamine synthetase expression concomitant with the reduction in Rh glycoprotein gene expression indicates reduced nitrogen/ammonia metabolism, most likely decreased protein synthesis. Additionally, fish showed reduced plasma total CO2, osmolality and Na+ (but not Cl-) levels, possibly related to reduced drinking rates and metabolic acidosis. Our work shows that Lake Magadi tilapia have the capacity to survive short periods of starvation which could occur when siltation linked to flash floods covers their main food source, but their seemingly hardwired high metabolic rates would compromise long-term survival.

19.
Proc Biol Sci ; 286(1903): 20190630, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31113326

RESUMO

Na+ K+ ATPase (NKA) is crucial to branchial ion transport as it uses the energy from ATP to move Na+ against its electrochemical gradient. When fish encounter extremely dilute environments the energy available from ATP hydrolysis may not be sufficient to overcome thermodynamic constraints on ion transport. Yet many fish species-including zebrafish-are capable of surviving in dilute environments. Despite much study, the physiological mechanisms by which this occurs remain poorly understood. Here, we demonstrate that zebrafish acclimated to less than 10 µM Na+ water exhibit upregulation of a specific NKA α subunit ( zatp1a1a.5) that, unlike most NKA heterotrimers, would result in transfer of only a single Na+ and K+ per ATP hydrolysis reaction. Thermodynamic models demonstrate that this change is sufficient to reduce the activation energy of NKA, allowing it to overcome the adverse electrochemical gradient imposed by dilute freshwater. Importantly, upregulation of zatp1a1a.5 also coincides with the recovery of whole body Na+ post-transfer, which occurs within 24 h. While these structural modifications are crucial for allowing zebrafish to survive in ion-poor environments, phylogenetic and structural analysis of available α subunits from a range of teleosts suggests this adaptation is not widely distributed.


Assuntos
ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Aclimatação/fisiologia , Animais , Água Doce , Isoenzimas/genética , Isoenzimas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-30858098

RESUMO

The freshwater teleost Cyprinodon variegatus hubbsi (Cvh) diverged from its euryhaline relative Cyprinodon variegatus variegatus (Cvv) ~150 kya and these subspecies are physiologically distinct in their osmoregulatory capabilities. Cvv inhabits intertidal estuaries and saltwater marshes along the Gulf of Mexico and Atlantic coast, where they experience a broad temperature range from -1.9 to 43 °C and frequent bouts of hypoxia. In contrast, Cvh lives in several lakes in central Florida, where temperature is more stable (12-31 °C) and hypoxia is uncommon. To assess whether relaxed selective pressure on Cvh has resulted in reduced temperature and hypoxia tolerance, a comparative study on the effects of acclimation to 25, 30 and 35 °C on critical thermal tolerance (CTMax), hypoxia tolerance, and aerobic scope was performed. The CTMax was similar between subspecies and positively correlated with acclimation temperature. Neither subspecies, however, could survive at 38 °C for a prolonged period of time. In general, Cvv displayed greater hypoxia tolerance and aerobic scope relative to Cvh over the range of acclimation temperatures. Routine metabolic rate was significantly lower while maximum metabolic rate and aerobic scope were significantly higher in Cvv, but only in fish acclimated to 30 °C. Overall, the different responses of Cvh to relaxed selective pressure suggest these traits are weakly linked physiologically in these fishes.


Assuntos
Aclimatação , Cyprinidae/fisiologia , Hipóxia/fisiopatologia , Temperatura , Aerobiose , Animais , Cyprinidae/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA