Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(6): 068001, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822092

RESUMO

Nuclear magnetic resonance measurements of rotational and translational molecular dynamics are applied to characterize the nanoscale dynamic heterogeneity of a physically cross-linked solvent-polymer system above and below the glass transition temperature. Measured rotational dynamics identify domains associated with regions of solidlike and liquidlike dynamics. Translational dynamics provide quantitative length and timescales of nanoscale heterogeneity due to polymer network cross-link density. Mean squared displacement measurements of the solvent provide microrheological characterization of the system and indicate glasslike caging dynamics both above and below the glass transition temperature.

2.
Int J Pharm ; 397(1-2): 27-35, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20603205

RESUMO

The hydration of 4 mg Cardura XL (Pfizer), a commercially available gastrointestinal therapeutic system (GITS) tablet, was investigated using magnetic resonance imaging (MRI). A short echo time (T(e)=2.81 ms) technique for MRI of the hydration of a GITS tablet was implemented. From the MR images, signal intensity profiles were generated and interpreted in the context of diffusive and osmotic transport mechanisms. A distinct transition from diffusive to osmotic transport was measured at a timescale relevant to the measured drug release time. Diffusion and osmotic rate coefficients for water in the drug and polymer sweller layers of the tablet were quantified. Spin-lattice T(1) and spin-spin T(2) relaxation times of the water signal from within the tablet were measured as a function of hydration time in order to incorporate the effects of relaxation into interpretation of signal intensity and provide unique information on the distribution of water in different physical and chemical environments within the tablet.


Assuntos
Preparações de Ação Retardada , Doxazossina , Imageamento por Ressonância Magnética , Doxazossina/química , Excipientes , Trato Gastrointestinal , Solubilidade , Comprimidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA