Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(20): e0113421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346771

RESUMO

Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.


Assuntos
Infecções por Caliciviridae/imunologia , Macrófagos/virologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Antivirais , Infecções por Caliciviridae/metabolismo , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Interferons , Macrófagos/imunologia , Camundongos , Norovirus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Células RAW 264.7 , RNA de Cadeia Dupla/genética , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
2.
Viruses ; 12(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422883

RESUMO

Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.


Assuntos
Infecções por Coronavirus/veterinária , Grânulos Citoplasmáticos/virologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/fisiopatologia , Biossíntese de Proteínas , Células Vero , Replicação Viral
3.
PLoS Pathog ; 16(1): e1008250, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905230

RESUMO

Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome.


Assuntos
Infecções por Caliciviridae/virologia , DNA Helicases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Norovirus/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Infecções por Caliciviridae/genética , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA/metabolismo , Transdução de Sinais , Replicação Viral
4.
Nucleic Acids Res ; 46(7): 3707-3725, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29385536

RESUMO

Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3'untranslated region (3'UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.


Assuntos
Linfoma de Burkitt/genética , Proteínas de Ciclo Celular/genética , Herpesvirus Humano 4/genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas/genética , Linfócitos B/virologia , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Proteína Quinase CDC2/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/patogenicidade , Humanos , Poli A/genética , Ligação Proteica/genética , Sinais de Poliadenilação na Ponta 3' do RNA/genética
5.
J Gen Virol ; 98(9): 2207-2214, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28869001

RESUMO

The role of m6A methylation of RNA has remained elusive for decades, but recent technological advances are now allowing the mapping of the m6A methylation landscape at nucleotide level. This has spurred an explosion in our understanding of the role played by RNA epigenetics in RNA biology. m6A modifications have been tied to almost every aspect of the mRNA life cycle and it is now clear that RNA virus genomes are subject to m6A methylation. These modifications play various roles in the viral replication cycle. This review will summarize recent breakthroughs concerning m6A RNA modification and their implications for cellular and viral RNAs.


Assuntos
Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Animais , Humanos , Metilação , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Viral/genética
6.
Elife ; 3: e03528, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144939

RESUMO

Thousands of small Open Reading Frames (smORFs) with the potential to encode small peptides of fewer than 100 amino acids exist in our genomes. However, the number of smORFs actually translated, and their molecular and functional roles are still unclear. In this study, we present a genome-wide assessment of smORF translation by ribosomal profiling of polysomal fractions in Drosophila. We detect two types of smORFs bound by multiple ribosomes and thus undergoing productive translation. The 'longer' smORFs of around 80 amino acids resemble canonical proteins in translational metrics and conservation, and display a propensity to contain transmembrane motifs. The 'dwarf' smORFs are in general shorter (around 20 amino-acid long), are mostly found in 5'-UTRs and non-coding RNAs, are less well conserved, and have no bioinformatic indicators of peptide function. Our findings indicate that thousands of smORFs are translated in metazoan genomes, reinforcing the idea that smORFs are an abundant and fundamental genome component.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Biologia Computacional/métodos , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Genoma/genética , Peso Molecular , Peptídeos/química , Peptídeos/genética , Polirribossomos/genética , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Ribossomos/genética , Ribossomos/metabolismo
7.
Biochem J ; 452(1): 45-55, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23452202

RESUMO

During cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation. Furthermore, we demonstrate that steady-state levels of ArpC2 and Rac1 proteins increase at the leading edge during cell spreading, suggesting that localized protein synthesis has a pivotal role in controlling cell spreading and migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Movimento Celular/genética , Fibroblastos/fisiologia , RNA Mensageiro/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/biossíntese , Linhagem Celular Transformada , Fibroblastos/química , Fibroblastos/citologia , Humanos , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Família de Proteínas da Síndrome de Wiskott-Aldrich/biossíntese
8.
Biochem J ; 438(1): 217-27, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21539520

RESUMO

Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.


Assuntos
Movimento Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Domínio Catalítico , Células Cultivadas , Fibroblastos/citologia , Transferência Ressonante de Energia de Fluorescência , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Microdomínios da Membrana/metabolismo , Rede trans-Golgi
9.
Cell Cycle ; 9(22): 4592-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21099343

RESUMO

We have previously shown that the DNA damage-induced G2 arrest is contributed by inhibition of Aurora A (AurA) and that transduction of active AurA into arrested cells allows bypassing the block through reactivation of CDK1. In this study, we investigated the mechanism of DNA damage-induced AurA inhibition. We provide evidence that ionizing radiation (IR) administered in mitosis, a time when AurA protein and enzymatic activity reach peak levels, impairs interaction with the partner TPX2, leading to inactivation of the kinase through dephosphorylation of AurA T-loop residue, T288. We find that decreased AurA-TPX2 complex formation in response to irradiation results from reduced cellular levels of TPX2, an effect that is both contributed by increased APC/CDH1-dependent protein degradation and decreased translation of TPX2 mRNA.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/efeitos da radiação , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Radiação Ionizante
10.
Nucleic Acids Res ; 35(5): 1522-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17287294

RESUMO

Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5'-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein-protein interaction with the cellular translation machinery.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Biossíntese de Proteínas , Vírus da Raiva/patogenicidade , Proteínas da Matriz Viral/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 3 em Eucariotos/imunologia , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Subunidades Proteicas/metabolismo , RNA Mensageiro/química , RNA Viral/química , Ribossomos/virologia , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
11.
Virus Genes ; 35(1): 5-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17039407

RESUMO

It is now well established that Hepatitis C Virus (HCV) translation is driven by an Internal Ribosome Entry Site (IRES) resulting in cap-independent translation. Such a mechanism usually occurs with the help of IRES Associated Factors (ITAFs). Moreover, an important translational feature is likely conserved from the model of classical mRNA circularisation (5'-3' cross-talk), involving the HCV RNA highly structured 3' extremity called the 3'X region. This could bind several cellular factors and modulate the translation efficacy, at least in Rabbit Reticulocyte Lysate (RRL). In particular, polypyrimidine-binding proteins have been proposed to be potential HCV ITAFs, such as Polypyrimidine Tract Binding protein (PTB). However, contradictions still exist as to the role of PTB: its ability to bind both the HCV IRES and the 3'X region leads to the hypothesis that it could positively modulate IRES-driven translation in the presence of the X structure. Results of translational and PTB-binding studies of X mutant sequences led us to discredit PTB as protagonist of 3'X region stimulation on HCV IRES-driven translation. Moreover, competition assays of X RNA in trans on IRES-driven translation demonstrate the involvement of at least two stimulating factors and led to the conclusion that this mechanism is more complex than initially thought. Although we did not identify these factors, it is no longer doubtful that there is effectively a stimulating functional interaction between the HCV IRES and the 3'X region in RRL.


Assuntos
Hepacivirus/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Biossíntese de Proteínas/fisiologia , Regiões 3' não Traduzidas/metabolismo , Regiões 3' não Traduzidas/fisiologia , Regiões 5' não Traduzidas/metabolismo , Regiões 5' não Traduzidas/fisiologia , Animais , Sequência de Bases , Hepacivirus/genética , Técnicas In Vitro , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Biossíntese de Proteínas/genética , RNA/química , Coelhos , Reticulócitos/química , Reticulócitos/metabolismo
12.
Mol Genet Genomics ; 276(4): 402-12, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16909284

RESUMO

The domain V within the internal ribosome entry segment (IRES) of poliovirus (PV) is expected to be important in its own neurovirulence because it contains an attenuating mutation in each of the Sabin vaccine strains. In this study, we try to find out if the results observed in the case of Sabin vaccine strains of PV can be extrapolated to another virus belonging to the same genus of enteroviruses but with a different tropism. To test this hypothesis, we used the coxsackievirus B3 (CVB3), known to be the most common causal agent of viral myocarditis. The introduction of the three PV Sabin-like mutations in the equivalent positions (nucleotides 484, 485, and 473) to the domain V of the CVB3 IRES results in significant reduced viral titer of the Sabin3-like mutant (Sab3-like) but not on those of Sab1- and Sab2-like mutants. This low titer was correlated with poor translation efficiency in vitro when all mutants were translated in rabbit reticulocyte lysates. However, elucidation by biochemical probing of the secondary structure of the entire domain V of the IRES of Sabin-like mutants reveals no distinct profiles in comparison with the wild-type counterpart. Prediction of secondary structure by MFOLD program indicates a structural perturbation of the stem containing the Sab3-like mutation, suggesting that specific protein-viral RNA interactions are disrupted, preventing efficient viral translation.


Assuntos
Enterovirus Humano B/genética , Animais , Sequência de Bases , DNA Viral/genética , Enterovirus Humano B/metabolismo , Enterovirus Humano B/patogenicidade , Células HeLa , Humanos , Técnicas In Vitro , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Poliovirus/genética , Poliovirus/metabolismo , Poliovirus/patogenicidade , Vacina Antipólio Oral/genética , Biossíntese de Proteínas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Coelhos , Especificidade da Espécie , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA