RESUMO
Importance: Limited randomized clinical trial data exist on the safety of simultaneous administration of COVID-19 and influenza vaccines. Objective: To compare the reactogenicity, safety, and changes in health-related quality of life (HRQOL) after simultaneous vs sequential receipt of messenger RNA (mRNA) COVID-19 vaccine and quadrivalent inactivated influenza vaccine (IIV4). Design, Setting, and Participants: This randomized, placebo-controlled clinical trial was conducted between October 8, 2021, and June 14, 2023, at 3 US sites. Participants were nonpregnant persons aged 5 years or older with the intention of receiving both influenza and mRNA COVID-19 vaccines. Interventions: Intramuscular administration in opposite arms of either IIV4 or saline placebo simultaneously with mRNA COVID-19 vaccine at visit 1. Those who received placebo at visit 1 received IIV4 and those who received IIV4 at visit 1 received placebo 1 to 2 weeks later at visit 2. Main Outcomes and Measures: The primary composite reactogenicity outcome was the proportion of participants with fever, chills, myalgia, and/or arthralgia of moderate or greater severity within 7 days after vaccination visits 1 and/or 2, using a 10% noninferiority margin. Secondary outcomes were solicited reactogenicity events and unsolicited adverse events (AEs) for 7 days after each visit separately and HRQOL after visit 1, assessed by the EuroQol 5-Dimension 5-Level (EQ-5D-5L) Index. Serious AEs (SAEs) and AEs of special interest (AESIs) were assessed for 121 days. Outcomes were compared between groups. Results: A total of 335 persons (mean [SD] age, 33.4 [15.1] years) were randomized (169 to the simultaneous group and 166 to the sequential group); 211 (63.0%) were female, and 255 (76.1%) received bivalent BNT162b2 mRNA COVID-19 vaccine. The proportion with the primary composite reactogenicity outcome in the simultaneous group (25.6% [n = 43]) was noninferior to the proportion in the sequential group (31.3% [n = 52]) (site-adjusted difference, -5.6 percentage points [pp]; 95% CI, -15.2 to 4.0 pp). Respective proportions in each group were similar after each visit separately (visit 1, 40 [23.8%] vs 47 [28.3%]; visit 2, 5 [3.0%] vs 9 [5.4%]). No significant group differences in participants with AEs (21 [12.4%] vs 16 [9.6%]), SAEs (1 [0.6%] vs 1 [0.6%]), and AESIs (19 [11.2%] vs 9 [5.4%]) were observed in the simultaneous vs sequential groups, respectively. Among participants with severe reactogenicity, the mean (SD) EQ-5D-5L Index score decreased from 0.92 (0.08) to 0.92 (0.09) prevaccination to 0.81 (0.09) to 0.82 (0.12) postvaccination. Conclusions and Relevance: In this randomized clinical trial assessing simultaneous vs sequential administration of mRNA COVID-19 and IIV4 vaccines, reactogenicity was comparable in both groups. These findings support the option of simultaneous administration of these vaccines. Trial Registration: ClinicalTrials.gov Identifier: NCT05028361.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Influenza , Influenza Humana , Qualidade de Vida , SARS-CoV-2 , Vacinas de Produtos Inativados , Humanos , Feminino , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/administração & dosagem , Masculino , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/uso terapêutico , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Influenza Humana/prevenção & controle , Adolescente , Idoso , Adulto Jovem , Vacinas de mRNA , Criança , Injeções IntramuscularesRESUMO
Importance: Quadrivalent adjuvanted inactivated influenza vaccine (aIIV4) and adjuvanted recombinant zoster vaccine (RZV) contain novel adjuvants. Data are limited on the comparative safety, reactogenicity, and health-related quality of life (HRQOL) effects of the simultaneous administration of these vaccines. Objective: To compare the safety and reactogenicity after simultaneous doses of RZV and aIIV4 administration (opposite arms) with simultaneous doses of RZV with quadrivalent high-dose inactivated influenza vaccine [HD-IIV4]). Design, Setting, and Participants: This randomized blinded clinical trial was conducted during the 2021-2022 and 2022-2023 influenza seasons at 2 centers in the US among community-dwelling adults aged 65 years or older. Analysis was performed on an intention-to-treat basis. Intervention: Simultaneous intramuscular administration of RZV dose 1 and aIIV4 or HD-IIV4 in opposite arms after age stratification (65-69 and ≥70 years) and randomization. Main Outcomes and Measures: The primary outcome was the proportions of participants with 1 or more severe solicited reactions during days 1 to 8, using a noninferiority test (10% noninferiority margin). Additional measures included serious adverse events and adverse events of clinical interest during days 1 to 43 of the study period. Results: A total of 267 adults (median age, 71 years [range, 65-92 years]; 137 men [51.3%]) were randomized; 130 received simultaneous RZV and aIIV4, and 137 received simultaneous RZV and HD-IIV4. The proportion of patients reporting 1 or more severe reactions after simultaneous administration of RZV and aIIV4 (15 of 115 [11.5%]) was noninferior compared with simultaneous RZV and HD-IIV4 (17 of 119 [12.5%]) (absolute difference, -1.0% [95% CI, -8.9% to 7.1%]). There were no significant differences in the number of serious adverse events or adverse events of clinical interest between the groups. Conclusions and Relevance: In this clinical trial of simultaneous doses of RZV and aIIV4 compared with simultaneous doses of RZV and HD-IIV4, overall safety findings were similar between groups. From a safety standpoint, this study supports the simultaneous administration of RZV and aIIV4 among older adults. Trial Registration: ClinicalTrials.gov Identifier: NCT05007041.
Assuntos
Adjuvantes Imunológicos , Vacina contra Herpes Zoster , Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Masculino , Feminino , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/administração & dosagem , Vacina contra Herpes Zoster/administração & dosagem , Vacina contra Herpes Zoster/efeitos adversos , Influenza Humana/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Idoso de 80 Anos ou mais , Herpes Zoster/prevenção & controle , Vacinação/métodos , Vacinação/efeitos adversos , Qualidade de VidaRESUMO
This report updates the 2023-24 recommendations of the Advisory Committee on Immunization Practices (ACIP) concerning the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2022;72[No. RR-2]:1-24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Trivalent inactivated influenza vaccines (IIV3s), trivalent recombinant influenza vaccine (RIV3), and trivalent live attenuated influenza vaccine (LAIV3) are expected to be available. All persons should receive an age-appropriate influenza vaccine (i.e., one approved for their age), with the exception that solid organ transplant recipients aged 18 through 64 years who are receiving immunosuppressive medication regimens may receive either high-dose inactivated influenza vaccine (HD-IIV3) or adjuvanted inactivated influenza vaccine (aIIV3) as acceptable options (without a preference over other age-appropriate IIV3s or RIV3). Except for vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed and recommended vaccine is available. ACIP recommends that adults aged ≥65 years preferentially receive any one of the following higher dose or adjuvanted influenza vaccines: trivalent high-dose inactivated influenza vaccine (HD-IIV3), trivalent recombinant influenza vaccine (RIV3), or trivalent adjuvanted inactivated influenza vaccine (aIIV3). If none of these three vaccines is available at an opportunity for vaccine administration, then any other age-appropriate influenza vaccine should be used.Primary updates to this report include the following two topics: the composition of 2024-25 U.S. seasonal influenza vaccines and updated recommendations for vaccination of adult solid organ transplant recipients. First, following a period of no confirmed detections of wild-type influenza B/Yamagata lineage viruses in global surveillance since March 2020, 2024-25 U.S. influenza vaccines will not include an influenza B/Yamagata component. All influenza vaccines available in the United States during the 2024-25 season will be trivalent vaccines containing hemagglutinin derived from 1) an influenza A/Victoria/4897/2022 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/67/2022 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines); 2) an influenza A/Thailand/8/2022 (H3N2)-like virus (for egg-based vaccines) or an influenza A/Massachusetts/18/2022 (H3N2)-like virus (for cell culture-based and recombinant vaccines); and 3) an influenza B/Austria/1359417/2021 (Victoria lineage)-like virus. Second, recommendations for vaccination of adult solid organ transplant recipients have been updated to include HD-IIV3 and aIIV3 as acceptable options for solid organ transplant recipients aged 18 through 64 years who are receiving immunosuppressive medication regimens (without a preference over other age-appropriate IIV3s or RIV3).This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2024-25 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/acip-recs/hcp/vaccine-specific/flu.html?CDC_AAref_Val=https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Assuntos
Comitês Consultivos , Centers for Disease Control and Prevention, U.S. , Esquemas de Imunização , Vacinas contra Influenza , Influenza Humana , Estações do Ano , Humanos , Vacinas contra Influenza/administração & dosagem , Estados Unidos , Influenza Humana/prevenção & controle , Adulto , Adolescente , Pessoa de Meia-Idade , Criança , Idoso , Lactente , Pré-Escolar , Adulto Jovem , Feminino , Masculino , GravidezRESUMO
Respiratory syncytial virus (RSV) is a major cause of respiratory illness and hospitalization in older adults during fall and winter in the United States. The 2023-2024 RSV season was the first during which RSV vaccination was recommended for U.S. adults aged ≥60 years, using shared clinical decision-making. On June 26, 2024, the Advisory Committee on Immunization Practices voted to update this recommendation as follows: a single dose of any Food and Drug Administration-approved RSV vaccine (Arexvy [GSK]; Abrysvo [Pfizer]; or mResvia [Moderna]) is now recommended for all adults aged ≥75 years and for adults aged 60-74 years who are at increased risk for severe RSV disease. Adults who have previously received RSV vaccine should not receive another dose. This report summarizes the evidence considered for these updated recommendations, including postlicensure data on vaccine effectiveness and safety, and provides clinical guidance for the use of RSV vaccines in adults aged ≥60 years. These updated recommendations are intended to maximize RSV vaccination coverage among persons most likely to benefit, by clarifying who is at highest risk and by reducing implementation barriers associated with the previous shared clinical decision-making recommendation. Continued postlicensure monitoring will guide future recommendations.
Assuntos
Comitês Consultivos , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Humanos , Idoso , Estados Unidos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Centers for Disease Control and Prevention, U.S.Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Humanos , Estados Unidos/epidemiologia , Idoso , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Pessoa de Meia-Idade , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/epidemiologia , Feminino , Masculino , Idoso de 80 Anos ou mais , Sistemas de Notificação de Reações Adversas a MedicamentosRESUMO
The U.S. COVID-19 vaccination program, which commenced in December 2020, has been instrumental in preventing morbidity and mortality from COVID-19 disease. Safety monitoring has been an essential component of the program. The federal government undertook a comprehensive and coordinated approach to implement complementary safety monitoring systems and to communicate findings in a timely and transparent way to healthcare providers, policymakers, and the public. Monitoring involved both well-established and newly developed systems that relied on both spontaneous (passive) and active surveillance methods. Clinical consultation for individual cases of adverse events following vaccination was performed, and monitoring of special populations, such as pregnant persons, was conducted. This report describes the U.S. government's COVID-19 vaccine safety monitoring systems and programs used by the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the Department of Defense, the Department of Veterans Affairs, and the Indian Health Service. Using the adverse event of myocarditis following mRNA COVID-19 vaccination as a model, we demonstrate how the multiple, complementary monitoring systems worked to rapidly detect, assess, and verify a vaccine safety signal. In addition, longer-term follow-up was conducted to evaluate the recovery status of myocarditis cases following vaccination. Finally, the process for timely and transparent communication and dissemination of COVID-19 vaccine safety data is described, highlighting the responsiveness and robustness of the U.S. vaccine safety monitoring infrastructure during the national COVID-19 vaccination program.
RESUMO
The GSK and Pfizer respiratory syncytial virus (RSV) vaccines are both indicated for adults aged 60 years and older, but only the Pfizer product is approved for use in pregnancy to prevent RSV-associated lower respiratory tract disease in infants aged younger than 6 months. To assess for vaccine administration errors (ie, administration of the GSK RSV vaccine to pregnant persons) VAERS (Vaccine Adverse Event Reporting System), a U.S. passive reporting system, was searched for the time period from August 2023 to January 2024. A total of 113 reports of these administration errors were identified. Most reports (103, 91.2%) did not describe an adverse event. These administration errors are preventable with proper education and training and other preventive measures.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Adulto , Feminino , Humanos , Gravidez , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/induzido quimicamente , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinação , Erros MédicosRESUMO
During the COVID-19 pandemic, candidate COVID-19 vaccines were being developed for potential use in the United States on an unprecedented, accelerated schedule. It was anticipated that once available, under U.S. Food and Drug Administration (FDA) Emergency Use Authorization (EUA) or FDA approval, COVID-19 vaccines would be broadly used and potentially administered to millions of individuals in a short period of time. Intensive monitoring in the post-EUA/licensure period would be necessary for timely detection and assessment of potential safety concerns. To address this, the Centers for Disease Control and Prevention (CDC) convened an Advisory Committee on Immunization Practices (ACIP) work group focused solely on COVID-19 vaccine safety, consisting of independent vaccine safety experts and representatives from federal agencies - the ACIP COVID-19 Vaccine Safety Technical Work Group (VaST). This report provides an overview of the organization and activities of VaST, summarizes data reviewed as part of the comprehensive effort to monitor vaccine safety during the COVID-19 pandemic, and highlights selected actions taken by CDC, ACIP, and FDA in response to accumulating post-authorization safety data. VaST convened regular meetings over the course of 29 months, from November 2020 through April 2023; through March 2023 FDA issued EUAs for six COVID-19 vaccines from four different manufacturers and subsequently licensed two of these COVID-19 vaccines. The independent vaccine safety experts collaborated with federal agencies to ensure timely assessment of vaccine safety data during this time. VaST worked closely with the ACIP COVID-19 Vaccines Work Group; that work group used safety data and VaST's assessments for benefit-risk assessments and guidance for COVID-19 vaccination policy. Safety topics reviewed by VaST included those identified in safety monitoring systems and other topics of scientific or public interest. VaST provided guidance to CDC's COVID-19 vaccine safety monitoring efforts, provided a forum for review of data from several U.S. government vaccine safety systems, and assured that a diverse group of scientists and clinicians, external to the federal government, promptly reviewed vaccine safety data. In the event of a future pandemic or other biological public health emergency, the VaST model could be used to strengthen vaccine safety monitoring, enhance public confidence, and increase transparency through incorporation of independent, non-government safety experts into the monitoring process, and through strong collaboration among federal and other partners.
RESUMO
Respiratory syncytial virus (RSV) is the leading cause of hospitalization among U.S. infants. Nirsevimab (Bevfortus, Sanofi and AstraZeneca) is recommended to prevent RSV-associated lower respiratory tract infection (LRTI) in infants. In August 2023, the Food and Drug Administration (FDA) approved RSVpreF vaccine (Abrysvo, Pfizer Inc.) for pregnant persons as a single dose during 32-36 completed gestational weeks (i.e., 32 weeks and zero days' through 36 weeks and 6 days' gestation) to prevent RSV-associated lower respiratory tract disease in infants aged <6 months. Since October 2021, CDC's Advisory Committee on Immunization Practices (ACIP) RSV Vaccines Pediatric/Maternal Work Group has reviewed RSV epidemiology and evidence regarding safety, efficacy, and potential economic impact of pediatric and maternal RSV prevention products, including RSVpreF vaccine. On September 22, 2023, ACIP and CDC recommended RSVpreF vaccine using seasonal administration (i.e., during September through end of January in most of the continental United States) for pregnant persons as a one-time dose at 32-36 weeks' gestation for prevention of RSV-associated LRTI in infants aged <6 months. Either maternal RSVpreF vaccination during pregnancy or nirsevimab administration to the infant is recommended to prevent RSV-associated LRTI among infants, but both are not needed for most infants. All infants should be protected against RSV-associated LRTI through use of one of these products.
Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Feminino , Humanos , Lactente , Gravidez , Comitês Consultivos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Estados Unidos/epidemiologia , VacinaçãoRESUMO
To inform Advisory Committee for Immunization Practices (ACIP) COVID-19 vaccine policy decisions, we developed a benefit-risk assessment framework that directly compared the estimated benefits of COVID-19 vaccination to individuals (e.g., prevention of COVID-19-associated hospitalization) with risks associated with COVID-19 vaccines. This assessment framework originated following the identification of thrombosis with thrombocytopenia syndrome (TTS) after Janssen COVID-19 vaccination in April 2021. We adapted the benefit-risk assessment framework for use in subsequent policy decisions, including the adverse events of myocarditis and Guillain-Barre syndrome (GBS) following mRNA and Janssen COVID-19 vaccination respectively, expansion of COVID-19 vaccine approvals or authorizations to new age groups, and use of booster doses. Over the first year of COVID-19 vaccine administration in the United States (December 2020-December 2021), we used the benefit-risk assessment framework to inform seven different ACIP policy decisions. This framework allowed for rapid and direct comparison of the benefits and potential harms of vaccination, which may be helpful in informing other vaccine policy decisions. The assessments were a useful tool for decision-making but required reliable and granular data to stratify analyses and appropriately focus on populations most at risk for a specific adverse event. Additionally, careful decision-making was needed on parameters for data inputs. Sensitivity analyses were used where data were limited or uncertain; adjustments in the methodology were made over time to ensure the assessments remained relevant and applicable to the policy questions under consideration.
RESUMO
BACKGROUND: Adjuvanted inactivated influenza vaccine (aIIV) and high-dose inactivated influenza vaccine (HD-IIV) are U.S.-licensed for adults aged ≥ 65 years. This study compared serum hemagglutination inhibition (HAI) antibody titers for the A(H3N2) and A(H1N1)pdm09 and B strains after trivalent aIIV3 and trivalent HD-IIV3 in an older adult population. RESULTS: The immunogenicity population included 342 participants who received aIIV3 and 338 participants who received HD-IIV3. The proportion of participants that seroconverted to A(H3N2) vaccine strains after allV3 (112 participants [32.8%]) was inferior to the proportion of participants that seroconverted after HD-IIV3 (130 participants [38.5%]) at day 29 after vaccination (difference, - 5.8%; 95%CI, - 12.9% to 1.4%). There were no significant differences between the vaccine groups in percent seroconversion to A(H1N1)pdm09 or B vaccine strains, in percent seropositivity for any of the strains, or in post-vaccination GMT for the A(H1N1)pdm09 strain. The GMTs for the post-vaccination A(H3N2) and B strains were higher after HD-IIV than after aIIV3. CONCLUSIONS: Overall immune responses were similar after aIIV3 and HD-IIV3. For the primary outcome, the aIIV3 seroconversion rate for H3N2 did not meet noninferiority criteria compared with HD-IIV3, but the HD-IIV3 seroconversion rate was not statistically superior to the aIIV3 seroconversion rate. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03183908.
RESUMO
BACKGROUND: The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. METHODS: Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020-March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay (DCBA). Anti-PEG IgG and IgM were measured using two different assays: DCBA and a PEGylated-polystyrene bead assay. Laboratorians were blinded to case/control status. RESULTS: All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65â¯%) were hospitalized and 7 (35â¯%) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21â¯days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10â¯%) case-patients vs 8 of 30 (27â¯%) controls (pâ¯=â¯0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0â¯%) vs 1 of 30 (3â¯%) controls (pâ¯>nâ¯0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. CONCLUSION: Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.
Assuntos
Anafilaxia , Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Masculino , Anafilaxia/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunoglobulina E , Imunoglobulina G , Imunoglobulina M , Imunossupressores , Polietilenoglicóis/efeitos adversos , RNA Mensageiro , Vacinação/efeitos adversosRESUMO
Multisystem inflammatory syndrome in children (MIS-C) is a complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; in the United States, reporting of MIS-C after coronavirus disease 2019 (COVID-19) vaccination is required for vaccine safety monitoring. Pfizer-BioNTech COVID-19 vaccine was authorized for children aged 5-11 years on 29 October 2021. Covering a period when approximately 7 million children received vaccine, surveillance for MIS-C ≤ 90 days postvaccination using passive systems identified 58 children with MIS-C and laboratory evidence of past/recent SARS-CoV-2 infection, and 4 without evidence. During a period with extensive SARS-CoV-2 circulation, MIS-C illness in children after COVID-19 vaccination who lacked evidence of SARS-CoV-2 infection was rare (<1 per million vaccinated children).
Assuntos
Vacinas contra COVID-19 , COVID-19 , Criança , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2RESUMO
BACKGROUND: The VARIVAX® Pregnancy Registry was established in 1995 to monitor pregnancy outcomes of women who received varicella vaccine (ie, VARIVAX) inadvertently while pregnant. METHODS: Health care providers and consumers sent voluntary reports about women who received VARIVAX 3 months before or during pregnancy. Follow-up occurred to evaluate pregnancy outcomes for birth defects. Outcomes from prospectively reported pregnancy exposures (ie, reports received before the outcome of the pregnancy was known) among varicella-zoster virus (VZV)-seronegative women were used to calculate rates and 95% confidence intervals (CIs). RESULTS: From 17 March 1995 through 16 October 2013, 1601 women were enrolled-966 prospectively-among whom there were 819 live births. Among 164 infants born to women who were VZV seronegative at the time of vaccination, no cases of congenital varicella syndrome (CVS) were identified (rate, 0 per 100, 95% CI, 0.0-2.2) and the birth prevalence of major birth defects was 4.3 per 100 liveborn infants (95% CI 1.7-8.6) with no pattern suggestive of CVS. No defects consistent with CVS were identified in any registry reports. CONCLUSIONS: Data collected through the VARIVAX pregnancy registry do not support a relationship between the occurrence of CVS or major birth defects and varicella vaccine exposure during pregnancy, although the small numbers of exposures cannot rule out a low risk. VARIVAX remains contraindicated during pregnancy.
Assuntos
Infecção pelo Vírus da Varicela-Zoster , Vacinas Virais , Humanos , Lactente , Gravidez , Feminino , Estados Unidos , Vacina contra Varicela , Herpesvirus Humano 3 , Sistema de Registros , Vacinas Atenuadas , Centers for Disease Control and Prevention, U.S.RESUMO
BACKGROUND: Data on medium-term outcomes in indivduals with myocarditis after mRNA COVID-19 vaccination are scarce. We aimed to assess clinical outcomes and quality of life at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination in adolescents and young adults. METHODS: In this follow-up surveillance study, we conducted surveys in US individuals aged 12-29 years with myocarditis after mRNA COVID-19 vaccination, for whom a report had been filed to the Vaccine Adverse Event Reporting System between Jan 12 and Nov 5, 2021. A two-component survey was administered, one component to patients (or parents or guardians) and one component to health-care providers, to assess patient outcomes at least 90 days since myocarditis onset. Data collected were recovery status, cardiac testing, and functional status, and EuroQol health-related quality-of-life measures (dichotomised as no problems or any problems), and a weighted quality-of-life measure, ranging from 0 to 1 (full health). The EuroQol results were compared with published results in US populations (aged 18-24 years) from before and early on in the COVID-19 pandemic. FINDINGS: Between Aug 24, 2021, and Jan 12, 2022, we collected data for 519 (62%) of 836 eligible patients who were at least 90 days post-myocarditis onset: 126 patients via patient survey only, 162 patients via health-care provider survey only, and 231 patients via both surveys. Median patient age was 17 years (IQR 15-22); 457 (88%) patients were male and 61 (12%) were female. 320 (81%) of 393 patients with a health-care provider assessment were considered recovered from myocarditis by their health-care provider, although at the last health-care provider follow-up, 104 (26%) of 393 patients were prescribed daily medication related to myocarditis. Of 249 individuals who completed the quality-of-life portion of the patient survey, four (2%) reported problems with self-care, 13 (5%) with mobility, 49 (20%) with performing usual activities, 74 (30%) with pain, and 114 (46%) with depression. Mean weighted quality-of-life measure (0·91 [SD 0·13]) was similar to a pre-pandemic US population value (0·92 [0·13]) and significantly higher than an early pandemic US population value (0·75 [0·28]; p<0·0001). Most patients had improvements in cardiac diagnostic marker and testing data at follow-up, including normal or back-to-baseline troponin concentrations (181 [91%] of 200 patients with available data), echocardiograms (262 [94%] of 279 patients), electrocardiograms (240 [77%] of 311 patients), exercise stress testing (94 [90%] of 104 patients), and ambulatory rhythm monitoring (86 [90%] of 96 patients). An abnormality was noted among 81 (54%) of 151 patients with follow-up cardiac MRI; however, evidence of myocarditis suggested by the presence of both late gadolinium enhancement and oedema on cardiac MRI was uncommon (20 [13%] of 151 patients). At follow-up, most patients were cleared for all physical activity (268 [68%] of 393 patients). INTERPRETATION: After at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination, most individuals in our cohort were considered recovered by health-care providers, and quality of life measures were comparable to those in pre-pandemic and early pandemic populations of a similar age. These findings might not be generalisable given the small sample size and further follow-up is needed for the subset of patients with atypical test results or not considered recovered. FUNDING: US Centers for Disease Control and Prevention.
Assuntos
COVID-19 , Miocardite , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Meios de Contraste , Feminino , Seguimentos , Gadolínio , Humanos , Masculino , Miocardite/diagnóstico , Miocardite/epidemiologia , Miocardite/etiologia , Pandemias , Qualidade de Vida , RNA Mensageiro , Troponina , Estados Unidos/epidemiologia , Vacinação , Adulto JovemRESUMO
THIS REPORT UPDATES THE 2021-22 RECOMMENDATIONS OF THE ADVISORY COMMITTEE ON IMMUNIZATION PRACTICES (ACIP) CONCERNING THE USE OF SEASONAL INFLUENZA VACCINES IN THE UNITED STATES: (MMWR Recomm Rep 2021;70[No. RR-5]:1-24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. With the exception of vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. All seasonal influenza vaccines expected to be available in the United States for the 2022-23 season are quadrivalent, containing hemagglutinin (HA) derived from one influenza A(H1N1)pdm09 virus, one influenza A(H3N2) virus, one influenza B/Victoria lineage virus, and one influenza B/Yamagata lineage virus. Inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Trivalent influenza vaccines are no longer available, but data that involve these vaccines are included for reference. INFLUENZA VACCINES MIGHT BE AVAILABLE AS EARLY AS JULY OR AUGUST, BUT FOR MOST PERSONS WHO NEED ONLY 1 DOSE OF INFLUENZA VACCINE FOR THE SEASON, VACCINATION SHOULD IDEALLY BE OFFERED DURING SEPTEMBER OR OCTOBER. HOWEVER, VACCINATION SHOULD CONTINUE AFTER OCTOBER AND THROUGHOUT THE SEASON AS LONG AS INFLUENZA VIRUSES ARE CIRCULATING AND UNEXPIRED VACCINE IS AVAILABLE. FOR MOST ADULTS (PARTICULARLY ADULTS AGED ≥65 YEARS) AND FOR PREGNANT PERSONS IN THE FIRST OR SECOND TRIMESTER, VACCINATION DURING JULY AND AUGUST SHOULD BE AVOIDED UNLESS THERE IS CONCERN THAT VACCINATION LATER IN THE SEASON MIGHT NOT BE POSSIBLE. CERTAIN CHILDREN AGED 6 MONTHS THROUGH 8 YEARS NEED 2 DOSES; THESE CHILDREN SHOULD RECEIVE THE FIRST DOSE AS SOON AS POSSIBLE AFTER VACCINE IS AVAILABLE, INCLUDING DURING JULY AND AUGUST. VACCINATION DURING JULY AND AUGUST CAN BE CONSIDERED FOR CHILDREN OF ANY AGE WHO NEED ONLY 1 DOSE FOR THE SEASON AND FOR PREGNANT PERSONS WHO ARE IN THE THIRD TRIMESTER IF VACCINE IS AVAILABLE DURING THOSE MONTHS: UPDATES DESCRIBED IN THIS REPORT REFLECT DISCUSSIONS DURING PUBLIC MEETINGS OF ACIP THAT WERE HELD ON OCTOBER 20, 2021; JANUARY 12, 2022; FEBRUARY 23, 2022; AND JUNE 22, 2022. PRIMARY UPDATES TO THIS REPORT INCLUDE THE FOLLOWING THREE TOPICS: 1) THE COMPOSITION OF 2022-23 U.S. SEASONAL INFLUENZA VACCINES; 2) UPDATES TO THE DESCRIPTION OF INFLUENZA VACCINES EXPECTED TO BE AVAILABLE FOR THE 2022-23 SEASON, INCLUDING ONE INFLUENZA VACCINE LABELING CHANGE THAT OCCURRED AFTER THE PUBLICATION OF THE 2021-22 ACIP INFLUENZA RECOMMENDATIONS; AND 3) UPDATES TO THE RECOMMENDATIONS CONCERNING VACCINATION OF ADULTS AGED ≥65 YEARS. FIRST, THE COMPOSITION OF 2022-23 U.S. INFLUENZA VACCINES INCLUDES UPDATES TO THE INFLUENZA A(H3N2) AND INFLUENZA B/VICTORIA LINEAGE COMPONENTS. U.S.-LICENSED INFLUENZA VACCINES WILL CONTAIN HA DERIVED FROM AN INFLUENZA A/VICTORIA/2570/2019 (H1N1)PDM09-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/WISCONSIN/588/2019 (H1N1)PDM09-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA A/DARWIN/9/2021 (H3N2)-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/DARWIN/6/2021 (H3N2)-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA B/AUSTRIA/1359417/2021 (VICTORIA LINEAGE)-LIKE VIRUS; AND AN INFLUENZA B/PHUKET/3073/2013 (YAMAGATA LINEAGE)-LIKE VIRUS. SECOND, THE APPROVED AGE INDICATION FOR THE CELL CULTURE-BASED INACTIVATED INFLUENZA VACCINE, FLUCELVAX QUADRIVALENT (CCIIV4), WAS CHANGED IN OCTOBER 2021 FROM ≥2 YEARS TO ≥6 MONTHS. THIRD, RECOMMENDATIONS FOR VACCINATION OF ADULTS AGED ≥65 YEARS HAVE BEEN MODIFIED. ACIP RECOMMENDS THAT ADULTS AGED ≥65 YEARS PREFERENTIALLY RECEIVE ANY ONE OF THE FOLLOWING HIGHER DOSE OR ADJUVANTED INFLUENZA VACCINES: QUADRIVALENT HIGH-DOSE INACTIVATED INFLUENZA VACCINE (HD-IIV4), QUADRIVALENT RECOMBINANT INFLUENZA VACCINE (RIV4), OR QUADRIVALENT ADJUVANTED INACTIVATED INFLUENZA VACCINE (AIIV4). IF NONE OF THESE THREE VACCINES IS AVAILABLE AT AN OPPORTUNITY FOR VACCINE ADMINISTRATION, THEN ANY OTHER AGE-APPROPRIATE INFLUENZA VACCINE SHOULD BE USED: THIS REPORT FOCUSES ON RECOMMENDATIONS FOR THE USE OF VACCINES FOR THE PREVENTION AND CONTROL OF SEASONAL INFLUENZA DURING THE 2022-23 INFLUENZA SEASON IN THE UNITED STATES. A BRIEF SUMMARY OF THE RECOMMENDATIONS AND A LINK TO THE MOST RECENT BACKGROUND DOCUMENT CONTAINING ADDITIONAL INFORMATION ARE AVAILABLE AT: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Comitês Consultivos , Criança , Feminino , Humanos , Esquemas de Imunização , Lactente , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Gravidez , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas/uso terapêutico , Vacinas de Produtos Inativados/uso terapêuticoRESUMO
BACKGROUND AND OBJECTIVES: Asthma is considered a precaution for use of quadrivalent live attenuated influenza vaccine (LAIV4) in persons aged ≥5 years because of concerns for wheezing events. We evaluated the safety of LAIV4 in children with asthma, comparing the proportion of children with asthma exacerbations after LAIV4 or quadrivalent inactivated influenza vaccine (IIV4). METHODS: We enrolled 151 children with asthma, aged 5 to 17 years, during 2 influenza seasons. Participants were randomly assigned 1:1 to receive IIV4 or LAIV4 and monitored for asthma symptoms, exacerbations, changes in peak expiratory flow rate (PEFR), and changes in the asthma control test for 42 days after vaccination. RESULTS: We included 142 participants in the per-protocol analysis. Within 42 days postvaccination, 18 of 142 (13%) experienced an asthma exacerbation: 8 of 74 (11%) in the LAIV4 group versus 10 of 68 (15%) in the IIV4 group (LAIV4-IIV4 = -0.0390 [90% confidence interval -0.1453 to 0.0674]), meeting the bounds for noninferiority. When adjusted for asthma severity, LAIV4 remained noninferior to IIV4. There were no significant differences in the frequency of asthma symptoms, change in PEFR, or childhood asthma control test/asthma control test scores in the 14 days postvaccination between LAIV4 and IIV4 recipients. Vaccine reactogenicity was similar between groups, although sore throat (P = .051) and myalgia (P <.001) were more common in the IIV4 group. CONCLUSIONS: LAIV4 was not associated with increased frequency of asthma exacerbations, an increase in asthma-related symptoms, or a decrease in PEFR compared with IIV4 among children aged 5 to 17 years with asthma.
Assuntos
Asma , Vacinas contra Influenza , Influenza Humana , Adolescente , Criança , Pré-Escolar , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/diagnóstico , Influenza Humana/prevenção & controle , Vacinas Atenuadas/efeitos adversos , Vacinas de Produtos InativadosRESUMO
On February 27, 2021, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the adenovirus-vectored COVID-19 vaccine (Janssen Biotech, Inc., a Janssen Pharmaceutical company, Johnson & Johnson), and on February 28, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for its use as a single-dose primary vaccination in persons aged ≥18 years (1,2). On April 13, 2021, CDC and FDA recommended a pause in the use of Janssen COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome (TTS), a rare condition characterized by low platelets and thrombosis, including at unusual sites such as the cerebral venous sinus (cerebral venous sinus thrombosis [CVST]), after receipt of the vaccine.* ACIP rapidly convened two emergency meetings to review reported cases of TTS, and 10 days after the pause commenced, ACIP reaffirmed its interim recommendation for use of the Janssen COVID-19 vaccine in persons aged ≥18 years, but included a warning regarding rare clotting events after vaccination, primarily among women aged 1849 years (3). In July, after review of an updated benefit-risk assessment accounting for risks of Guillain-Barré syndrome (GBS) and TTS, ACIP concluded that benefits of vaccination with Janssen COVID-19 vaccine outweighed risks. Through ongoing safety surveillance and review of reports from the Vaccine Adverse Event Reporting System (VAERS), additional cases of TTS after receipt of Janssen COVID-19 vaccine, including deaths, were identified. On December 16, 2021, ACIP held an emergency meeting to review updated data on TTS and an updated benefit-risk assessment. At that meeting, ACIP made a recommendation for preferential use of mRNA COVID-19 vaccines over the Janssen COVID-19 vaccine, including both primary and booster doses administered to prevent COVID-19, for all persons aged ≥18 years. The Janssen COVID-19 vaccine may be considered in some situations, including for persons with a contraindication to receipt of mRNA COVID-19 vaccines. Since June 2020, ACIP has convened 23 public meetings to review data on the epidemiology of COVID-19 and the use of COVID-19 vaccines, including nine during which Janssen COVID-19 vaccine-related data were reviewed. The ACIP COVID-19 Vaccines Work Group, comprising experts in infectious diseases, vaccinology, vaccine safety, public health, and ethics, has held weekly meetings to review COVID-19 surveillance data, evidence for vaccine efficacy and safety, and implementation considerations for COVID-19 vaccines. In addition, the COVID-19 Vaccines Safety Technical Work Group (VaST), consisting of independent vaccine safety experts and established to provide expert consultation on COVID-19 vaccine safety issues, has reviewed safety data from the COVID-19 vaccination program during weekly meetings. After TTS was first identified in the United States in April 2021, a benefit-risk assessment for the use of the Janssen COVID-19 vaccine was presented to ACIP using an adapted Evidence to Recommendations (EtR) framework. In the setting of limited COVID-19 vaccine supply in the United States at that time, ACIP reaffirmed its interim recommendations for the use of the Janssen COVID-19 vaccine in persons aged ≥18 years under FDA's EUA, which was updated to include a warning that rare clotting events might occur after vaccination, primarily among women aged 1849 years (3). Updates to the benefit-risk assessment were also reviewed by ACIP in June 2021, after an increased risk for myocarditis, particularly in males aged 1229 years, was observed after receipt of mRNA COVID-19 vaccines; and again, in July 2021, after an increased number of cases of GBS were identified following administration of Janssen COVID-19 vaccine (4,5). After each review, ACIP determined that the benefits of COVID-19 vaccination in preventing COVID-19 morbidity and associated mortality outweighed the risks for these rare, but serious adverse events; however, the balance of benefits and risks varied by age and sex. Ongoing postauthorization safety surveillance identified additional TTS cases and associated deaths after Janssen COVID-19 vaccination, and updated safety data were reviewed by VaST in December 2021. The COVID-19 Vaccines Work Group also reviewed an updated benefit-risk assessment of COVID-19 vaccines in the setting of new safety findings and sufficient COVID-19 vaccine supply in the United States. In addition, FDA updated the EUA fact sheets with additional TTS data in December 2021.§ A summary of the data reviewed and discussions from both VaST and the ACIP COVID-19 Vaccines Work Group were presented to ACIP during their emergency meeting on December 16, 2021.
Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Trombose/complicações , Programas de Imunização/normas , Síndrome de Guillain-Barré/complicações , COVID-19/prevenção & controle , Ad26COVS1/efeitos adversosRESUMO
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition associated with antecedent SARS-CoV-2 infection. In the USA, reporting of MIS-C after vaccination is required under COVID-19 vaccine emergency use authorisations. We aimed to investigate reports of individuals aged 12-20 years with MIS-C after COVID-19 vaccination reported to passive surveillance systems or through clinician outreach to the US Centers for Disease Control and Prevention (CDC). METHODS: In this surveillance activity, we investigated potential cases of MIS-C after COVID-19 vaccination reported to CDC's MIS-C national surveillance system, the Vaccine Adverse Event Reporting System (co-administered by CDC and the US Food and Drug Administration), and CDC's Clinical Immunization Safety Assessment Project. A multidisciplinary team adjudicated cases by use of the CDC MIS-C definition. Any positive SARS-CoV-2 serology test satisfied case criteria; although anti-nucleocapsid antibodies indicate previous SARS-CoV-2 infection, anti-spike protein antibodies indicate either past or recent infection or COVID-19 vaccination. We describe the demographic and clinical features of cases, stratified by laboratory evidence of SARS-CoV-2 infection. To calculate the reporting rate of MIS-C, we divided the count of all individuals meeting the MIS-C case definition, and of those without evidence of SARS-CoV-2 infection, by the number of individuals aged 12-20 years in the USA who received one or more COVID-19 vaccine doses up to Aug 31, 2021, obtained from CDC national vaccine surveillance data. FINDINGS: Using surveillance results from Dec 14, 2020, to Aug 31, 2021, we identified 21 individuals with MIS-C after COVID-19 vaccination. Of these 21 individuals, median age was 16 years (range 12-20); 13 (62%) were male and eight (38%) were female. All 21 were hospitalised: 12 (57%) were admitted to an intensive care unit and all were discharged home. 15 (71%) of 21 individuals had laboratory evidence of past or recent SARS-CoV-2 infection, and six (29%) did not. As of Aug 31, 2021, 21 335 331 individuals aged 12-20 years had received one or more doses of a COVID-19 vaccine, making the overall reporting rate for MIS-C after vaccination 1·0 case per million individuals receiving one or more doses in this age group. The reporting rate in only those without evidence of SARS-CoV-2 infection was 0·3 cases per million vaccinated individuals. INTERPRETATION: Here, we describe a small number of individuals with MIS-C who had received one or more doses of a COVID-19 vaccine before illness onset; the contribution of vaccination to these illnesses is unknown. Our findings suggest that MIS-C after COVID-19 vaccination is rare. Continued reporting of potential cases and surveillance for MIS-C illnesses after COVID-19 vaccination is warranted. FUNDING: US Centers for Disease Control and Prevention.