Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; : e0012724, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38682773

RESUMO

Chromobacterium subtsugae exhibits toxicity to Drosophila melanogaster, providing a new infection model to study host homeostasis. Previous studies using pathogen models have proven to be a useful tool to understand host physiology. Here, we report on the whole-genome sequences of these microbes obtained from short and long reads.

2.
Cell Rep ; 43(4): 114087, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583152

RESUMO

Microbial invasions underlie host-microbe interactions resulting in pathogenesis and probiotic colonization. In this study, we explore the effects of the microbiome on microbial invasion in Drosophila melanogaster. We demonstrate that gut microbes Lactiplantibacillus plantarum and Acetobacter tropicalis improve survival and lead to a reduction in microbial burden during infection. Using a microbial interaction assay, we report that L. plantarum inhibits the growth of invasive bacteria, while A. tropicalis reduces this inhibition. We further show that inhibition by L. plantarum is linked to its ability to acidify its environment via lactic acid production by lactate dehydrogenase, while A. tropicalis diminishes the inhibition by quenching acids. We propose that acid from the microbiome is a gatekeeper to microbial invasions, as only microbes capable of tolerating acidic environments can colonize the host. The methods and findings described herein will add to the growing breadth of tools to study microbe-microbe interactions in broad contexts.


Assuntos
Drosophila melanogaster , Animais , Drosophila melanogaster/microbiologia , Microbiota , Acetobacter/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia
3.
mBio ; 15(5): e0064624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38551345

RESUMO

The practice of designating two or more authors as equal contributors (ECs) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on curriculum vitae (CVs) or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society for Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020. In this study, we analyze data from over 2,500 ASM publications to see how this policy affected gender bias and how research teams are making decisions on author order. Data on publications from 2018 to 2021 show that gender bias was largely nonsignificant both before and after authors were asked by ASM to provide an EC statement. The most likely reasons for EC order included alphabetical order, seniority, and chance, although there were differences for publications from different geographic regions. However, many research teams used unique methods in order selection, highlighting the importance of EC statements to provide clarity for readers, funding agencies, and tenure committees. IMPORTANCE: First-author publications are important for early career scientists to secure funding and educational opportunities. However, an analysis published in eLife in 2019 noted that female authors are more likely to be placed second even when both authors report they have contributed equally. American Society for Microbiology announced in response that they would require submissions to include a written justification of author order. In this paper, we analyze the resultant data and show that laboratories are most likely to use some combination of alphabetical order, seniority, and chance to determine author order. However, the prevalence of these methods varies based on the research team's geographic location. These findings highlight the importance of equal contributor statements to provide clarity for readers, funding agencies, and tenure committees. Furthermore, this work is critically important for understanding how these decisions are made and provides a glimpse of the sociology of science.


Assuntos
Autoria , Sexismo , Humanos , Sexismo/estatística & dados numéricos , Masculino , Feminino , Editoração/estatística & dados numéricos , Pesquisadores/estatística & dados numéricos , Microbiologia , Publicações/estatística & dados numéricos
4.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496597

RESUMO

The practice of designating two or more authors as equal contributors (EC) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on CVs or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society of Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020. In this study we analyze data from over 2500 ASM publications to see how this policy affected gender bias and how research teams are making decisions on author order. Data on publications from 2018-2021 show that gender bias was largely nonsignificant both before and after authors were asked by ASM to provide an EC statement. The most likely reasons for EC order included alphabetical order, seniority, and chance, although there were differences for publications from different geographic regions. However, many research teams used unique methods in order selection, highlighting the importance of EC statements to provide clarity for readers, funding agencies, and tenure committees.

5.
mSystems ; 9(3): e0131723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38380971

RESUMO

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in P. aeruginosa that contribute to fitness during the colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies on P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance the existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.IMPORTANCEDrosophila melanogaster is a powerful model for understanding host-pathogen interactions. Research with this system has yielded notable insights into mechanisms of host immunity and defense, many of which emerged from the analysis of bacterial mutants defective for well-characterized virulence factors. These foundational studies-and advances in high-throughput sequencing of transposon mutants-support unbiased screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen interplay and exploit the tractability of this model host, we used a high-throughput, genome-wide mutant analysis to find genes that enable the pathogen P. aeruginosa to colonize the fly. Our analysis reveals critical mediators of P. aeruginosa establishment in its host, some of which are required across fly and mouse systems. These findings demonstrate the utility of massively parallel mutant analysis and provide a platform for aligning the fly toolkit with comprehensive bacterial genomics.


Assuntos
Drosophila melanogaster , Infecções por Pseudomonas , Animais , Camundongos , Drosophila melanogaster/genética , Pseudomonas aeruginosa/genética , Genoma Bacteriano , Fatores de Virulência/genética , Infecções por Pseudomonas/genética , Mamíferos/genética
6.
mSystems ; 9(2): e0111023, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197647

RESUMO

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions, and its study poses significant challenges. The most straightforward experimental outcome involves an observation of time to death upon infection. However, in measuring this outcome, the internal parameters and the dynamics of each particular host-microbe interaction in a population of interactions are hidden from the experimentalist. To investigate whether a time-to-death (time-to-event) data set provides adequate information for searching for chaotic signatures, we first determined our ability to detect chaos in simulated data sets of time-to-event measurements and successfully distinguished the time-to-event distribution of a chaotic process from a comparable stochastic one. To do so, we introduced an inversion measure to test for a chaotic signature in time-to-event distributions. Next, we searched for chaos in the time-to-death of Caenorhabditis elegans and Drosophila melanogaster infected with Pseudomonas aeruginosa or Pseudomonas entomophila, respectively. We found suggestions of chaotic signatures in both systems but caution that our results are preliminary and highlight the need for more fine-grained and larger data sets in determining dynamical characteristics. If validated, chaos in host-microbe interactions would have important implications for the occurrence and outcome of infectious diseases, the reproducibility of experiments in the field of microbial pathogenesis, and the prediction of microbial threats.IMPORTANCEIs microbial pathogenesis a predictable scientific field? At a time when we are dealing with coronavirus disease 2019, there is intense interest in knowing about the epidemic potential of other microbial threats and new emerging infectious diseases. To know whether microbial pathogenesis will ever be a predictable scientific field requires knowing whether a host-microbe interaction follows deterministic, stochastic, or chaotic dynamics. If randomness and chaos are absent from virulence, there is hope for prediction in the future regarding the outcome of microbe-host interactions. Chaotic systems are inherently unpredictable, although it is possible to generate short-term probabilistic models, as is done in applications of stochastic processes and machine learning to weather forecasting. Information on the dynamics of a system is also essential for understanding the reproducibility of experiments, a topic of great concern in the biological sciences. Our study finds preliminary evidence for chaotic dynamics in infectious diseases.


Assuntos
Doenças Transmissíveis , Interações entre Hospedeiro e Microrganismos , Animais , Drosophila melanogaster , Reprodutibilidade dos Testes , Matemática
7.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045230

RESUMO

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in P. aeruginosa that contribute to fitness during colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies of P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.

8.
Microbiol Resour Announc ; 12(11): e0060223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37830846

RESUMO

Lactiplantibacillus plantarum and Acetobacter tropicalis are bacterial symbionts commonly isolated from decaying fruits and from the microbiome of Drosophila melanogaster. Studies have shown that these organisms interact synergistically, imparting beneficial effects on the host. Here, we report whole-genome sequences of these microbes obtained from long and short reads.

9.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272924

RESUMO

Elucidating the role of one of the proteins produced by Lactiplantibacillus plantarum reveals a new molecule that allows this gut bacterium to support the development of fruit fly larvae.


Assuntos
Drosophila melanogaster , Microbiota , Animais , Drosophila melanogaster/microbiologia , Simbiose , Drosophila , Frutas , Larva/microbiologia
10.
Sci Rep ; 13(1): 10154, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349387

RESUMO

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.


Assuntos
Aedes , Inseticidas , Piretrinas , Febre Amarela , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Mosquitos Vetores
12.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711873

RESUMO

Microbial invasions underlie host-microbe interactions that result in microbial pathogenesis and probiotic colonization. While these processes are of broad interest, there are still gaps in our understanding of the barriers to entry and how some microbes overcome them. In this study, we explore the effects of the microbiome on invasions of foreign microbes in Drosophila melanogaster. We demonstrate that gut microbes Lactiplantibacillus plantarum and Acetobacter tropicalis improve survival during invasion of a lethal gut pathogen and lead to a reduction in microbial burden. Using a novel multi-organism interactions assay, we report that L. plantarum inhibits the growth of three invasive Gram-negative bacteria, while A. tropicalis prevents this inhibition. A series of in vitro and in vivo experiments revealed that inhibition by L. plantarum is linked to its ability to acidify both internal and external environments, including culture media, fly food, and the gut itself, while A. tropicalis diminishes the inhibition by quenching acids. We propose that acid produced by the microbiome serves as an important gatekeeper to microbial invasions, as only microbes capable of tolerating acidic environments can colonize the host. The methods described herein will add to the growing breadth of tools to study microbe-microbe interactions in broad contexts.

13.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36712033

RESUMO

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.

14.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36561184

RESUMO

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature, and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions and its study poses significant challenges. The most straightforward experimental outcome involves an observation of time to death upon infection. However, in measuring this outcome, the internal parameters, and the dynamics of each particular host-microbe interaction in a population of interactions are hidden from the experimentalist. To investigate whether a time-to-death (time to event) dataset provides adequate information for searching for chaotic signatures, we first determined our ability to detect chaos in simulated data sets of time-to-event measurements and successfully distinguished the time-to-event distribution of a chaotic process from a comparable stochastic one. To do so, we introduced an inversion measure to test for a chaotic signature in time-to-event distributions. Next, we searched for chaos, in time-to-death of Caenorhabditis elegans and Drosophila melanogaster infected with Pseudomonas aeruginosa or Pseudomonas entomophila, respectively. We found suggestions of chaotic signatures in both systems, but caution that our results are preliminary and highlight the need for more fine-grained and larger data sets in determining dynamical characteristics. If validated, chaos in host-microbe interactions would have important implications for the occurrence and outcome of infectious diseases, the reproducibility of experiments in the field of microbial pathogenesis and the prediction of microbial threats.

15.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426373

RESUMO

A fundamental and highly contested issue in microbiome research is whether internal organs such as the liver, brain, placenta, pancreas, and others are sterile and privileged or harbor a detectable and functional microbial biomass. In this issue of the JCI, Leinwand, Paul, et al. addressed this question using an array of diverse techniques and reported that normal healthy liver possesses a microbiome that is selectively recruited from the gut. They further showed that liver-enriched microbes contributed to shaping the immune network of this organ. Here, we attempt to put their findings into the context of other organs, discuss the technical challenges of defining such microbial communities, and provide some perspective about the road ahead for the field.


Assuntos
Bactérias , Microbiota , Feminino , Humanos , Fígado , Placenta , Gravidez
16.
Curr Opin Insect Sci ; 52: 100924, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483647

RESUMO

Most insects exhibit high reproductive capacity, which demands large amounts of energy, including macronutrients and micronutrients. Interestingly, many proteins involved in oogenesis depend on metals ions, in particular iron (Fe), zinc (Zn), and copper (Cu). Mechanisms by which metal ions influence reproduction have been described in Drosophila melanogaster, but remain poorly understood in hematophagous insects where blood meals include significant ingestion of metal ions. Moreover, there is evidence that some proteins involved in reproduction and immunity could have dual function in both processes. This review highlights the importance of metal ions in the reproduction of non-hematophagous and hematophagous insects. In addition, we discuss how insects optimize physiological processes using proteins involved in crosstalk between reproductive physiology and immunity, which is a double-edge sword in allocating their functions to protect the insect and ensure reproduction.


Assuntos
Drosophila melanogaster , Metais , Animais , Drosophila melanogaster/metabolismo , Íons , Metais/metabolismo , Reprodução , Zinco/metabolismo
17.
PLoS Biol ; 19(5): e3001182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979323

RESUMO

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Assuntos
Anopheles/efeitos dos fármacos , Glicina/análogos & derivados , Melaninas/metabolismo , Mariposas/efeitos dos fármacos , Animais , Anopheles/imunologia , Cryptococcus neoformans/patogenicidade , Dípteros/efeitos dos fármacos , Dípteros/imunologia , Glicina/metabolismo , Glicina/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Infecções/imunologia , Infecções/metabolismo , Infecções/fisiopatologia , Insetos/efeitos dos fármacos , Insetos/imunologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/imunologia , Mariposas/imunologia , Plasmodium falciparum/patogenicidade , Virulência , Glifosato
18.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593964

RESUMO

The world faces two seemingly unrelated challenges-a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery.


Assuntos
Antibacterianos , Descoberta de Drogas/educação , Ciência/educação , Estudantes , Bactérias/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos
19.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067193

RESUMO

Drosophila melanogaster gut microbes play important roles in host nutritional physiology. However, these associations are often indirect, and studies typically are in the context of specialized nutritional conditions, making it difficult to discern how microbiome-mediated impacts translate to physiologically relevant conditions, in the laboratory or nature. In this study, we quantified changes in dietary nutrients due to D. melanogaster gut bacteria on three artificial diets and a natural diet of grapes. We show that under all four diet conditions, bacteria altered the protein, carbohydrates, and moisture of the food substrate. An in-depth analysis of one diet revealed that bacteria also increased the levels of tryptophan, an essential amino acid encountered scarcely in nature. These nutrient changes result in an increased protein-to-carbohydrate (P:C) ratio in all diets, which we hypothesized to be a significant determinant of microbiome-mediated host nutritional physiology. To test this, we compared life history traits of axenic flies reared on the three artificial diets with increased P:C ratios or continuous bacterial inoculation. We found that while on some diets, an environment of nutritional plenitude had impacts on life history, it did not fully explain all microbiome-associated phenotypes. This suggests that other factors, such as micronutrients and feeding behavior, likely also contribute to life history traits in a diet-dependent manner. Thus, while some bacterial impacts on nutrition occur across diets, others are dictated by unique dietary environments, highlighting the importance of diet-microbiome interactions in D. melanogaster nutritional physiology.IMPORTANCE Both in the laboratory and in nature, D. melanogaster-associated microbes serve as nutritional effectors, either through the production of metabolites or as direct sources of protein biomass. The relationship between the microbiome and the resulting host nutritional physiology is significantly impacted by diet composition, yet studies involving D. melanogaster are performed using a wide range of artificial diets, making it difficult to discern which aspects of host-microbe interactions may be universal or diet dependent. In this study, we utilized three standard D. melanogaster diets and a natural grape diet to form a comprehensive understanding of the quantifiable nutritional changes mediated by the host microbial community. We then altered these artificial diets based on the observed microbe-mediated changes to demonstrate their potential to influence host physiology, allowing us to identify nutritional factors whose effects were either universal for the three artificial diets or dependent on host diet composition.


Assuntos
Dieta , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Microbioma Gastrointestinal/fisiologia , Nutrientes/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Fenômenos Fisiológicos Bacterianos , Vitis
20.
mBio ; 11(5)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994322

RESUMO

Enterobacteria, including Escherichia coli, bloom to high levels in the gut during inflammation and strongly contribute to the pathology of inflammatory bowel diseases. To survive in the inflamed gut, E. coli must tolerate high levels of antimicrobial compounds produced by the immune system, including toxic metals like copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show that extracellular copper is a potent detoxifier of HOCl and that the widely conserved bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to copper(I), specifically protects E. coli against damage caused by the combination of HOCl and intracellular copper. E. coli lacking RclA was highly sensitive to HOCl when grown in the presence of copper and was defective in colonizing an animal host. Our results indicate that there is unexpected complexity in the interactions between antimicrobial toxins produced by innate immune cells and that bacterial copper status is a key determinant of HOCl resistance and suggest an important and previously unsuspected role for copper redox reactions during inflammation.IMPORTANCE During infection and inflammation, the innate immune system uses antimicrobial compounds to control bacterial populations. These include toxic metals, like copper, and reactive oxidants, including hypochlorous acid (HOCl). We have now found that RclA, a copper(II) reductase strongly induced by HOCl in proinflammatory Escherichia coli and found in many bacteria inhabiting epithelial surfaces, is required for bacteria to resist killing by the combination of intracellular copper and HOCl and plays an important role in colonization of an animal host. This finding indicates that copper redox chemistry plays a critical and previously underappreciated role in bacterial interactions with the innate immune system.


Assuntos
Cobre/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Ácido Hipocloroso/farmacologia , Oxirredutases/metabolismo , Animais , Citoplasma/química , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Drosophila melanogaster , Proteínas de Escherichia coli/genética , Feminino , Oxidantes/farmacologia , Oxirredução , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA