Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(7)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406807

RESUMO

Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling.


Assuntos
Cistinose , Podócitos , Cistina/metabolismo , Cistinose/metabolismo , Humanos , Rim/patologia , Podócitos/metabolismo , Células-Tronco/metabolismo
2.
Nephrol Dial Transplant ; 37(10): 1808-1815, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-33515261

RESUMO

Nephrotic syndrome (NS) is characterized by massive proteinuria; podocyte loss or altered function is a central event in its pathophysiology. Treatment with glucocorticoids is the mainstay of therapy, however, many patients experience one or multiple relapses and prolonged use may be associated with severe adverse effects. Recently the beneficial effects of glucocorticoids have been attributed to a direct effect on podocytes in addition to the well-known immunosuppressive effects. The molecular effects of glucocorticoid action have been studied using animal and cell models of NS. This review provides a comprehensive overview of different molecular mediators regulated by glucocorticoids, including an overview of the model systems that were used to study them. Glucocorticoids are described to stimulate podocyte recovery by restoring pro-survival signalling of slit diaphragm-related proteins and limiting inflammatory responses. Of special interest is the effect of glucocorticoids on stabilizing the cytoskeleton of podocytes, since these effects are also described for other therapeutic agents used in NS, such as cyclosporin. Current models provide much insight but do not fully recapitulate the human condition since the pathophysiology underlying NS is poorly understood. New and promising models include the glomerulus-on-a-chip and kidney organoids, which have the potential to be further developed into functional NS models in the future.


Assuntos
Ciclosporinas , Síndrome Nefrótica , Podócitos , Animais , Ciclosporinas/metabolismo , Ciclosporinas/farmacologia , Ciclosporinas/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Glomérulos Renais/metabolismo , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA