Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Psychobiol ; 66(5): e22512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837366

RESUMO

The current study examined associations between parental adversities as experienced in adolescence and hair cortisol concentration (HCC) 26 years later (n = 47). Specifically, bivariate correlations and linear regressions were used to examine harsh parenting as well as parental economic pressure, emotional distress, and body mass index (BMI) when their adolescent was between 15 and 16 years old (parent average age 43). HCC was measured when the adolescent was an adult (average 42 years old), at a similar age to when their parent(s) first participated in the study. We also assessed their economic pressure, emotional distress, obesity, and perceived stress in adulthood. For results across generations, parental economic pressure experienced during adolescence was significantly related to HCC when these adolescents were adults. None of the adult economic pressure, emotional distress, BMI, and perceived stress variables were associated with their HCC. Interestingly, there were significant associations among adult perceived stress, economic pressure, emotional distress, and obesity. Thus, the association between parental economic pressure and adult HCC is independent of adult adversities. Results highlight early economic adversity as a possible childhood stressor that has implications throughout the life course.


Assuntos
Experiências Adversas da Infância , Cabelo , Hidrocortisona , Humanos , Cabelo/química , Feminino , Masculino , Hidrocortisona/metabolismo , Hidrocortisona/análise , Adulto , Adolescente , Estresse Psicológico/metabolismo , Poder Familiar , Índice de Massa Corporal , Angústia Psicológica , Obesidade/metabolismo
2.
Geroscience ; 46(1): 171-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889438

RESUMO

Comparative studies of aging are a promising approach to identifying general properties of and processes leading to aging. While to date, many comparative studies of aging in animals have focused on relatively narrow species groups, methodological innovations now allow for studies that include evolutionary distant species. However, comparative studies of aging across a wide range of species that have distinct life histories introduce additional challenges in experimental design. Here, we discuss these challenges, highlight the most pressing problems that need to be solved, and provide suggestions based on current approaches to successfully carry out comparative aging studies across the animal kingdom.


Assuntos
Envelhecimento , Longevidade , Animais , Modelos Animais , Evolução Biológica
3.
Immun Ageing ; 20(1): 11, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894996

RESUMO

BACKGROUND: The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in mammalian systems, but studies of immune function in long-lived, wild, non-mammalian populations are scarce. In this study we leverage a 38-year mark-recapture study to quantify the relationships among age, sex, survival, reproductive output and the innate immune system in a long-lived reptile, yellow mud turtles (Kinosternon flavescens; Testudines; Kinosternidae). METHODS: We estimated rates of survival and age-specific mortality by sex based on mark-recapture data for 1530 adult females and 860 adult males over 38 years of captures. We analyzed bactericidal competence (BC), and two immune responses to foreign red blood cells - natural antibody-mediated haemagglutination (NAbs), and complement-mediated haemolysis ability (Lys) - in 200 adults (102 females; 98 males) that ranged from 7 to 58 years of age captured in May 2018 during their emergence from brumation, and for which reproductive output and long-term mark-recapture data were available. RESULTS: We found that females are smaller and live longer than males in this population, but the rate of accelerating mortality across adulthood is the same for both sexes. In contrast, males exhibited higher innate immunity than females for all three immune variables we measured. All immune responses also varied inversely with age, indicating immunosenescence. For females that reproduced in the preceding reproductive season, egg mass (and therefore total clutch mass) increased with age,. In addition to immunosenescence of bactericidal competence, females that produced smaller clutches also had lower bactericidal competence. CONCLUSIONS: Contrary to the general vertebrate pattern of lower immune responses in males than females (possibly reflecting the suppressive effects of androgens), we found higher levels of all three immune variables in males. In addition, contrary to previous work that found no evidence of immunosenescence in painted turtles or red-eared slider turtles, we found a decrease in bactericidal competence, lysis ability, and natural antibodies with age in yellow mud turtles.

4.
Gen Comp Endocrinol ; 331: 114162, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356645

RESUMO

Glucocorticoids (GCs) are central mediators of vertebrate responses to intrinsic and extrinsic stimuli. Among the sources of variation in circulating GCs are transgenerational effects mediated by mothers. Here we studied potential maternal effects mediated by GCs on offspring phenotype in a live-bearing reptile, the western terrestrial garter snake (Thamnophis elegans). We evaluated the association between baseline corticosterone (CORT) levels during gestation (i.e., preparturition) in field-captured mothers and 1) reproductive success and offspring sex ratios, 2) birth phenotypic traits of offspring born under common-garden laboratory conditions, and 3) neonate (age 3 months) and juvenile (age 12 months) traits of offspring raised under two thermal regimes ('warm' and 'cool') during their first year of life. Reproductive success and offspring sex ratios were not associated with preparturition maternal CORT, but pregnant snakes with higher CORT levels gave birth to smaller, lighter offspring, which tended to grow faster to age three months. Neonate baseline CORT varied with preparturition maternal CORT in a sex-specific manner (positive trend for females, negative for males). Maternal CORT effects on offspring phenotype were no longer detectable in juveniles at age one year. Instead, juvenile phenotypes were most influenced by rearing environment, with offspring raised under the cool regime showing higher baseline CORT and slower growth than those raised under warmer conditions. Our findings support the notion that offspring phenotype might be continuously adjusted in response to environmental cues -both pre- and post-natal- and that the strength of maternal CORT effects declines as offspring develop and experience unique environmental challenges. Our results contribute to a growing literature on transgenerational effects of hormones and help to fill a gap in our knowledge of these effects in ectothermic amniotes.


Assuntos
Colubridae , Corticosterona , Animais , Feminino , Masculino , Corticosterona/farmacologia , Glucocorticoides , Reprodução , Razão de Masculinidade
5.
Proc Natl Acad Sci U S A ; 119(20): e2117669119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533284

RESUMO

Age-related changes in fertility have increasingly been documented in wild animal populations: In many species the youngest and oldest reproducers are disadvantaged relative to prime adults. How do these effects evolve, and what explains their diversity across species? Tackling this question requires detailed data on patterns of age-related reproductive performance in multiple animal species. Here, we compare patterns and consequences of age-related changes in female reproductive performance in seven primate populations that have been subjects of long-term continuous study for 29 to 57 y. We document evidence of age effects on fertility and on offspring performance in most, but not all, of these primate species. Specifically, females of six species showed longer interbirth intervals in the oldest age classes, youngest age classes, or both, and the oldest females also showed relatively fewer completed interbirth intervals. In addition, five species showed markedly lower survival among offspring born to the oldest mothers, and two species showed reduced survival for offspring born to both the youngest and the oldest mothers. In contrast, we found mixed evidence that maternal age affects the age at which daughters first reproduce: Only in muriquis and to some extent in chimpanzees, the only two species with female-biased dispersal, did relatively young mothers produce daughters that tended to have earlier first reproduction. Our findings demonstrate shared patterns as well as contrasts in age-related changes in female fertility across species of nonhuman primates and highlight species-specific behavior and life-history patterns as possible explanations for species-level differences.


Assuntos
Primatas , Reprodução , Envelhecimento , Animais , Feminino , Fertilidade , Humanos
6.
Aging Cell ; 21(2): e13542, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072344

RESUMO

Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/genética , Animais , Feminino , Longevidade/genética , Masculino , Caracteres Sexuais
7.
Proc Biol Sci ; 289(1967): 20212187, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078358

RESUMO

Changing climates and severe weather events can affect population viability. Individuals need to buffer such negative fitness consequences through physiological plasticity. Whether certain life-history strategies are more conducive to surviving changing climates is unknown, but theory predicts that strategies prioritizing maintenance and survival over current reproduction should be better able to withstand such change. We tested this hypothesis in a meta-population of garter snakes having naturally occurring variation in life-history strategies. We tested whether slow pace-of-life (POL) animals, that prioritize survival over reproduction, are more resilient than fast POL animals as measured by several physiological biomarkers. From 2006 to 2019, which included two multi-year droughts, baseline and stress-induced reactivity of plasma corticosterone and glucose varied annually with directionalities consistent with life-history theory. Slow POL animals exhibited higher baseline corticosterone and lower baseline glucose, relative to fast POL animals. These patterns were also observed in stress-induced measures; thus, reactivity was equivalent between ecotypes. However, in drought years, measures of corticosterone did not differ between different life histories. Immune cell distribution showed annual variation independent of drought or life history. These persistent physiological patterns form a backdrop to several extirpations of fast POL populations, suggesting a limited physiological toolkit to surviving periods of extreme drought.


Assuntos
Colubridae , Características de História de Vida , Animais , Colubridae/fisiologia , Corticosterona , Secas , Glucose , Serpentes/fisiologia
8.
J Exp Zool A Ecol Integr Physiol ; 337(3): 199-205, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855309

RESUMO

Temperature affects nearly every aspect of how organisms interact with and are constrained by their environment. Measures of organismal energetics, such as metabolic rate, are highly temperature-dependent and governed through temperature effects on rates of biochemical reactions. Characterizing the relationships among levels of biological organization can lend insight into how temperature affects whole-organism function. We tested the temperature dependence of cellular oxygen consumption and its relationship to whole-animal metabolic rate in garter snakes (Thamnophis elegans). Additionally, we tested whether thermal responses were linked to shifts in the fuel source oxidized to support metabolism with the use of carbon stable isotopes. Our results demonstrate temperature dependence of metabolic rates across levels of biological organization. Cellular (basal, adenosine triphosphate-linked) and whole-animal rates of respiration increased with temperature but were not correlated within or among individuals, suggesting that variation in whole-animal metabolic rates is not due simply to variation at the cellular level, but rather other interacting factors across scales of biological organization. Counter to trends observed during fasting, elevated temperature did not alter fuel selection (i.e., natural-abundance stable carbon isotope composition in breath, δ13 Cbreath ). This consistency suggests the maintenance and oxidation of a single fuel source supporting metabolism across a broad range of metabolic demands.


Assuntos
Colubridae , Animais , Isótopos de Carbono , Consumo de Oxigênio/fisiologia , Respiração , Temperatura
10.
J Hered ; 112(6): 508-518, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34351393

RESUMO

Many animal species exhibit multiple paternity, defined as multiple males genetically contributing to a single female reproductive event, such as a clutch or litter. Although this phenomenon is well documented across a broad range of taxa, the underlying causes and consequences remain poorly understood. For example, it is unclear how multiple paternity correlates with life-history strategies. Furthermore, males and females may differ in mating strategies and these patterns may shift with ecological context and life-history variation. Here, we take advantage of natural life-history variation in garter snakes (Thamnophis elegans) to address these questions in a robust field setting where populations have diverged along a slow-to-fast life-history continuum. We determine both female (observed) and male (using molecular markers) reproductive success in replicate populations of 2 life-history strategies. We find that despite dramatic differences in annual female reproductive output: 1) females of both life-history ecotypes average 1.5 sires per litter and equivalent proportions of multiply-sired litters, whereas 2) males from the slow-living ecotype experience greater reproductive skew and greater variance in reproductive success relative to males from the fast-living ecotype males despite having equivalent average reproductive success. Together, these results indicate strong intrasexual competition among males, particularly in the fast-paced life-history ecotype. We discuss these results in the context of competing hypotheses for multiple paternity related to population density, resource variability, and life-history strategy.


Assuntos
Colubridae , Animais , Ecótipo , Feminino , Masculino , Paternidade , Reprodução/genética , Comportamento Sexual Animal
11.
Ecol Evol ; 11(7): 3239-3250, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841780

RESUMO

Changing environments result in alterations at all levels of biological organization, from genetics to physiology to demography. The increasing frequency of droughts worldwide is associated with higher temperatures and reduced precipitation that can impact population persistence via effects on individual immune function and survival.We examined the effects of annual climate variation on immunity in two sympatric species of garter snakes from four populations in California over a seven-year period that included the record-breaking drought.We examined three indices of innate immunity: bactericidal competence (BC), natural antibodies (NABs), and complement-mediated lysis (CL).Precipitation was the only climatic variable explaining variation in immune function: spring precipitation of the current year was positively correlated to Thamnophis sirtalis BC and NABs, whereas spring precipitation of the previous year was positively correlated to T. elegans BC and NABs. This suggests that T. elegans experiences a physiological time-lag in response to reduced precipitation, which may reflect lack of capital for investment in immunity in the year following a dry year.In general, our findings demonstrate compelling evidence that climate can influence wild populations through effects on physiological processes, suggesting that physiological indices such as these may offer valuable opportunities for monitoring the effects of climate.

12.
Gen Comp Endocrinol ; 307: 113758, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771532

RESUMO

Characterizing the physiological response to prolonged cold exposure is essential for understanding the maintenance of long-term energy balance. As part of their natural life cycle, temperate ectotherms are often exposed to seasonal variation in temperatures, including extended periods of cold well below their activity range. Relatively little is known about variation in physiological responses as vertebrate ectotherms enter and exit brumation in response to sustained cold temperatures. We tested the influence of temperature on physiology before, during, and after a simulated brumation in the checkered garter snake (Thamnophis marcianus), a widespread ectothermic vertebrate. We tested for the relative effect of immediate temperature and physiological context (entering or exiting brumation) on hormones regulating energy balance, indicators of energy availability, and resting metabolic rate (V̇O2). Plasma corticosterone, glucose, and insulin, as well as immune cell heterophil: lymphocyte ratios responded to temperature, though they did so with different thermal response curves. Thermal sensitivity varied both among and within physiological measures depending on whether animals were going into or coming out of brumation. Additionally, V̇O2 was regulated beyond simple temperature-dependence, whereby post-brumation measures were depressed relative to pre-brumation measures at the same temperature. This pattern was characterized by a change in the temperature coefficient (Q10), with a larger pre-brumation Q10, suggesting reduced thermal sensitivity of metabolic rate following a period of extended cold exposure. The integrated physiological response presented here demonstrates not only temperature dependence across physiological axes, but seasonal variation in thermal responsiveness. Our results suggest that energy allocation decisions and hormonal regulation of underlying processes promote differing levels of thermal sensitivity when entering or exiting brumation.


Assuntos
Temperatura Baixa , Colubridae , Animais , Corticosterona , Estações do Ano , Temperatura
13.
Funct Ecol ; 34(1): 38-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32921868

RESUMO

1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.

14.
Mech Ageing Dev ; 191: 111316, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693105

RESUMO

At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm.


Assuntos
Envelhecimento , Pesquisa Biomédica , Consenso , Humanos
15.
Exp Gerontol ; 137: 110967, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387125

RESUMO

As a pacesetter for physiological processes, variation in metabolic rate can determine the shape of energetic trade-offs and thereby drive variation in life-history traits. In turn, such variation in metabolic performance and life-histories can have profound consequences for lifespan and lifetime fitness. Thus, the extent to which metabolic rate variation is due to phenotypic plasticity or fixed genetic differences among individuals or populations is likely to be shaped by natural selection. Here, we first present a generalized framework describing the central role of mitochondria in processes linking environmental, genomic, physiological, and aging variation. We then present a test of these relationships in an exemplary system: populations of garter snakes (Thamnophis elegans) exhibiting contrasting life-history strategies - fast-growing, early-reproducing, and fast-aging (FA) versus slow-growing, late-reproducing, and slow-aging (SA). Previous work has characterized divergences in mitochondrial function, reactive oxygen species processing, and whole-organism metabolic rate between these contrasting life-history ecotypes. Here, we report new data on cellular respiration and mitochondrial genomics and synthesize these results with previous work. We test hypotheses about the causes and implications of mitochondrial genome variation within this generalized framework. First, we demonstrate that snakes of the FA ecotype increase cellular metabolic rate across their lifespan, while the opposite pattern holds for SA snakes, implying that reduced energetic throughput is associated with a longer life. Second, we show that variants in mitochondrial genomes are segregating across the landscape in a manner suggesting selection on the physiological consequences of this variation in habitats varying in temperature, food availability, and rates of predation. Third, we demonstrate functional variation in whole-organism metabolic rate related to these mitochondrial genome sequence variants. With this synthesis of numerous datasets, we are able to further characterize how variation across levels of biological organization interact within this generalized framework and how this has resulted in the emergence of distinct life-history ecotypes that vary in their rates of aging and lifespan.


Assuntos
Colubridae , Envelhecimento/genética , Animais , Genômica , Humanos , Longevidade/genética , Mitocôndrias/genética
16.
J Exp Biol ; 223(Pt 12)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32376708

RESUMO

Immunosenescence is a well-known phenomenon in mammal systems, but its relevance in other long-lived vertebrates is less understood. Further, the influence of age and reproductive effort on immune function in long-lived species can be challenging to assess, as long-term data are scarce and it is often difficult to sample the oldest age classes. We used the painted turtle (Chrysemys picta) to test hypotheses of immunosenescence and a trade-off between reproductive output and immune function in a population of a long-lived vertebrate that has been monitored for over 30 years. These long-term data were utilized to employ a unique approach of aging turtles with mark-recapture data and population-specific growth modeling to obtain more accurate estimates of age. We analyzed natural antibodies, lysis ability and bactericidal competence in 126 individuals from 1 to 33 years of age captured during May and June 2011. Older turtles exhibited greater natural antibody levels than young individuals. Young females with large clutches exhibited greater lysis ability, while older females with large clutches had decreased lysis ability, suggesting a trade-off between reproductive output and immune function conditional upon age. However, bactericidal competence increased later in the nesting season for older females. Our study rejects the hypothesis of immunosenescence in a long-lived turtle, despite evidence of actuarial and reproductive senescence in this population. Additionally, we detected mixed evidence for a trade-off between reproduction and immune health.


Assuntos
Imunossenescência , Tartarugas , Envelhecimento , Animais , Feminino , Reprodução , Estações do Ano
17.
J Anim Ecol ; 89(8): 1883-1894, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472604

RESUMO

An understudied aspect of vertebrate ecoimmunology has been the relative contributions of environmental factors (E), genetic background (G) and their interaction (G × E) in shaping immune development and function. Environmental temperature is known to affect many aspects of immune function and alterations in temperature regimes have been implicated in emergent disease outbreaks, making it a critical environmental factor to study in the context of immune phenotype determinants of wild animals. We assessed the relative influences of environmental temperature, genetic background and their interaction on first-year development of innate and adaptive immune defences of captive-born garter snakes Thamnophis elegans using a reciprocal transplant laboratory experiment. We used a full-factorial design with snakes from two divergent life-history ecotypes, which are known to differ in immune function in their native habitats, raised under conditions mimicking the natural thermal regime-that is, warmer and cooler-of each habitat. Genetic background (ecotype) and thermal regime influenced innate and adaptive immune parameters of snakes, but in an immune-component specific manner. We found some evidence of G × E interactions but no indication of adaptive plasticity with respect to thermal environment. At the individual level, the effects of thermal environment on resource allocation decisions varied between the fast- and the slow-paced life-history ecotypes. Under warmer conditions, which increased food consumption of individuals in both ecotypes, the former invested mostly in growth, whereas the latter invested more evenly between growth and immune development. Overall, immune parameters were highly flexible, but results suggest that other environmental factors are likely more important than temperature per se in driving the ecotype differences in immunity previously documented in the snakes under field conditions. Our results also add to the understanding of investment in immune development and growth during early postnatal life under different thermal environments. Our finding of immune-component specific patterns strongly cautions against oversimplification of the highly complex immune system in ecoimmunological studies. In conjunction, these results deepen our understanding of the degree of immunological flexibility wild animals present, information that is ever more vital in the context of rapid global environmental change.


Assuntos
Colubridae , Animais , Ecossistema , Patrimônio Genético , Crescimento e Desenvolvimento , Temperatura
18.
Ecology ; 101(1): e02877, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471965

RESUMO

Understanding age-dependent patterns of survival is fundamental to predicting population dynamics, understanding selective pressures, and estimating rates of senescence. However, quantifying age-specific survival in wild populations poses significant logistical and statistical challenges. Recent work has helped to alleviate these constraints by demonstrating that age-specific survival can be estimated using mark-recapture data even when age is unknown for all or some individuals. However, previous approaches do not incorporate auxiliary information that can improve age estimates of individuals. We introduce a survival estimator that combines a von Bertalanffy growth model, age-specific hazard functions, and a Cormack-Jolly-Seber mark-recapture model into a single hierarchical framework. This approach allows us to obtain information about age and its uncertainty based on size and growth for individuals of unknown age when estimating age-specific survival. Using both simulated and real-world data for two painted turtle (Chrysemys picta) populations, we demonstrate that this additional information substantially reduces the bias of age-specific hazard rates, which allows for the testing of hypotheses related to aging. Estimating patterns of senescence is just one practical application of jointly estimating survival and growth; other applications include obtaining better estimates of the timing of recruitment and improved understanding of life-history trade-offs between growth and survival.


Assuntos
Tartarugas , Animais , Dinâmica Populacional , Incerteza
19.
Mol Ecol Resour ; 20(1): 308-317, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660689

RESUMO

Reptiles and other nonmammalian vertebrates have transcriptionally active nucleated red blood cells. If blood transcriptomes can provide quantitative data to address questions relevant to molecular ecology, this could circumvent the need to euthanize animals to assay tissues. This would allow longitudinal sampling of animals' responses to treatments, as well as sampling of protected taxa. We developed and annotated blood transcriptomes from six reptile species and found on average 25,000 proteins are being transcribed in the blood, and there is a CORE group of 9,282 orthogroups that are found in at least four of six species. In comparison to liver transcriptomes from the same taxa, approximately two-thirds of the orthogroups were found in both blood and liver; and a similar percentage of ecologically relevant gene groups (insulin and insulin-like signalling, electron transport chain, oxidative stress, glucocorticoid receptors) were found transcribed in both blood and liver. As a resource, we provide a user-friendly database of gene ids identified in each blood transcriptome. Although on average 37% of reads mapped to haemoglobin, importantly, the majority of nonhaemoglobin transcripts had sufficient depth (e.g., 97% at ≥10 reads) to be included in differential gene expression analysis. Thus, we demonstrate that RNAseq blood transcriptomes from a very small blood sample (<10 µl) is a minimally invasive option in nonmammalian vertebrates for quantifying expression of a large number of ecologically relevant genes that would allow longitudinal sampling and sampling of protected populations.


Assuntos
Proteínas Sanguíneas/genética , Répteis/genética , Análise de Sequência de RNA/métodos , Animais , Anotação de Sequência Molecular , Répteis/sangue , Répteis/classificação , Transcriptoma
20.
J Exp Biol ; 222(Pt 11)2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31109972

RESUMO

Early-life experiences can have far-reaching consequences for phenotypes into adulthood. The effect of early-life experiences on fitness, particularly under adverse conditions, is mediated by resource allocation to particular life-history traits. Reptiles exhibit great variation in life histories (e.g. indeterminate growth), thus selective pressures often mitigate the effects of early-life stress, particularly on growth and maturation. We examined the effects of early-life food restriction on growth, adult body size, physiology and reproduction in the checkered garter snake. Animals were placed on one of two early-life diet treatments: normal diet (approximating ad libitum feeding) or low diet (restricted to 20% of body mass in food weekly). At 15 weeks of age, low-diet animals were switched to the normal-diet treatment. Individuals fed a restricted diet showed reduced growth rates, depressed immunocompetence and a heightened glucocorticoid response. Once food restriction was lifted, animals experiencing nutritional stress early in life (low diet) caught up with the normal-diet group by increasing their growth, and were able to recover from the negative effects of nutritional stress on immune function and physiology. Growth restriction and the subsequent allocation of resources into increasing growth rates, however, had a negative effect on fitness. Mating success was reduced in low-diet males, while low-diet females gave birth to smaller offspring. In addition, although not a direct goal of our study, we found a sex-specific effect of early-life nutritional stress on median age of survival. Our study demonstrates both immediate and long-term effects of nutritional stress on physiology and growth, reproduction, and trade-offs among them.


Assuntos
Colubridae/fisiologia , Privação de Alimentos/fisiologia , Características de História de Vida , Fenômenos Fisiológicos da Nutrição Animal , Animais , Tamanho Corporal/fisiologia , Colubridae/crescimento & desenvolvimento , Feminino , Masculino , Reprodução , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA