Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 125(14): 7824-7838, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34262634

RESUMO

Solid-state, natural-abundance 95Mo NMR experiments of four different MoS2 materials have been performed on a magnet B 0 = 19.6 T and on a new Series Connected Hybrid (SCH) magnet at 35.2 T. Employing two different 2H-MoS2 (2H phase) materials, a "pseudo-amorphous" MoS2 nano-material, and a MoS2 layer on the Al2O3 support of a hydrodesulphurization (HDS) catalyst have enabled introduction of solid-state 95Mo NMR as an important analytical tool in studies of MoS2 nano-materials. 95Mo spin-lattice relaxation time (T 1) studies of 160- and 4-layer 2H-MoS2 samples at 19.6 and 35.2 T show their relaxation rates (1/T 1) increase in proportion to B 0 2. This is in accord with chemical shift anisotropy (CSA) relaxation being the dominant T 1(95Mo) mechanism, with a large 95Mo CSA = 1025 ppm determined for all four MoS2 nano-materials. The dominant CSA mechanism suggests the MoS2 band-gap electrons are delocalized throughout the lattice-layer structures, thereby acting as a fast modulation source (ω oτc << 1) for 95Mo CSA in 2H-MoS2. A decrease in T 1(95Mo) is observed for an increase in B 0 field and for a decrease in the number of 2H-MoS2 layers. All four nano-materials exhibit identical 95Mo electric field gradient (EFG) parameters. The T 1 results account for the several failures to retrieve 95Mo spectral EFG and CSA parameters for multilayer 2H-MoS2 samples in the pioneering solid-state 95Mo NMR studies performed during the past two decades (1990-2010), because of the extremely long T 1(95Mo) = ~200-250 s observed at low B 0 (~9.4 T) used at that time. Much shorter T 1(95Mo) values are observed even at 19.6 T for the "pseudo-amorphous" and the HDS catalyst (MoS2-Al2O3 support) MoS2 nano-materials. These allowed useful solid-state 95Mo NMR spectra for these two samples to be obtained at 19.6 T in a few to < 24 h. Most importantly, this research led to observation of an impressive 95Mo MAS spectrum for an average of 1-4 thick MoS2-layers on a Al2O3 support, i.e., the first MAS NMR spectrum of a low natural-abundance, low-γ quadrupole-nucleus species layered on a catalyst support. While a huge gain in NMR sensitivity, factor ~ 60, is observed for the 95Mo MAS spectrum of the 160-layer sample at 35.2 T compared to 14.1 T, the MAS spectrum for the 4-layer sample is almost completely wiped out at 35.2 T. This unusual observation for the 4-layer sample (crumpled, rose-like and defective Mo-edge structures) is due to an increased distribution of the isotropic 95Mo shifts in the 95Mo MAS spectra at B 0 up to 35.2 T upon reduction of the number of sample layers.

2.
ACS Nano ; 12(6): 5351-5358, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29767949

RESUMO

Layered transition metal dichalcogenides have distinct physicochemical properties at their edge-terminations. The production of an abundant density of edge structures is, however, impeded by the excess surface energy of edges compared to basal planes and would benefit from insight into the atomic growth mechanisms. Here, we show that edge-terminated MoS2 nanostructures can form during sulfidation of MoO2 nanocrystals by using in situ transmission electron microscopy (TEM). Time-resolved TEM image series reveal that the MoO2 surface can sulfide by inward progression of MoO2(202̅):MoS2(002) interfaces, resulting in upright-oriented and edge-exposing MoS2 sheets. This topotactic growth is rationalized in the interplay with density functional theory calculations by successive O-S exchange and Mo sublattice restructuring steps. The analysis shows that formation of edge-terminated MoS2 is energetically favorable at MoO2(110) surfaces and provides a necessary requirement for the propensity of a specific MoO2 surface termination to form edge-terminated MoS2. Thus, the present findings should benefit the rational development of transition metal dichalcogenide nanomaterials with abundant edge terminations.

3.
Nano Lett ; 18(6): 3454-3460, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664650

RESUMO

Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

4.
Angew Chem Int Ed Engl ; 53(40): 10723-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25078562

RESUMO

The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.

5.
J Magn Reson ; 230: 98-110, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454579

RESUMO

(17)O MAS NMR spectra recorded at 14.1T and room temperature (RT) for (17)O-enriched samples of the two perrhenates, KReO4 and NH4ReO4, exhibit very similar overall appearances of the manifold of spinning sidebands (ssbs) for the satellite transitions (STs) and the central transition (CT). These overall appearances of the spectra are easily simulated in terms of the usual quadrupole coupling and chemical shift interaction parameters. However, a detailed inspection of the line shapes for the individual ssbs of the STs and, in particular, for the CT in the spectrum of KReO4 reveals line-shape features, which to our knowledge have not before been observed experimentally in 1D MAS NMR spectra for any quadrupolar nucleus, nor emerged from simulations for any combination of second-order quadrupolar interaction and chemical shift anisotropy. In contrast, such line-shape features are not observed for the corresponding ssbs (STs and CT) in the 14.1T RT (17)O MAS NMR spectrum of NH4ReO4. Considering the additional interaction of a combination of residual heteronuclear (17)O-(185/)(187)Re dipolar and scalar J coupling between this spin pair of two quadrupolar nuclei, spectral simulations for KReO4 show that these interactions are able to account for the observed line shapes, although the expected (1)J((17)O-(185/)(187)Re) six-line spin-spin splittings are not resolved. Low-temperature, high-field (21.1T) (17)O VT MAS NMR spectra of both KReO4 and NH4ReO4 show that full resolution into six-line multiplets for the centerbands are achieved at -90°C and -138°C, respectively. This allows determination of (1)J((17)O-(187)Re)=-268Hz and -278Hz for KReO4 and NH4ReO4, respectively, i.e., an isotropic (1)J coupling and its sign between two quadrupolar nuclei, observed for the first time directly from solid-state one-pulse 1D MAS NMR spectra, without resort to additional 1D or 2D experiments. Determination of T1((187)Re) spin-lattice relaxation times, observed indirectly through a 2D (17)O EXSY experiment for NH4ReO4 at several low temperatures, show that the dynamics observed for the ReO4(-) anion in the (17)O VT MAS NMR spectra at low temperatures are caused by self-decoupling of (1)J((17)O-(187)Re). The (1)J((17)O-(187)Re) values determined here for ReO4(-) from solid-state (17)O MAS NMR, along with literature (1)J((17)O-M) values for oxoanions (M being a quadrupolar nucleus) obtained from liquid-state NMR, have allowed correlations to be established between the reduced coupling constant (1)K((17)O-M)=2π(1)J((17)O-M)/(γ17OγMℏ) and the atomic number of M.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/química , Rênio/análise , Rênio/química , Isótopos/análise , Isótopos/química , Modelos Químicos , Transição de Fase , Temperatura
7.
Inorg Chem ; 50(16): 7676-84, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21766886

RESUMO

Following several seemingly straightforward but unsuccessful attempts to prepare a sample of (17)O-enriched Cs(2)WO(4), we here report a simple, aqueous procedure for synthesis of pure Cs(2)WO(4), if so desired, enriched in (17)O. The purpose for the preparation of (17)O-enriched Cs(2)WO(4) is to record its solid-state (17)O MAS NMR spectrum, which would allow for a determination of its quadrupole coupling and chemical shift anisotropy (CSA) parameters and thereby for a comparison with the corresponding (33)S and (77)Se parameters in the related compounds M(2)WS(4) and M(2)WSe(4). These compounds are isomorphous and crystallize in the orthorhombic space group Pnma, and Cs(2)WO(4) turns out to be the only alkali metal tungstate with the Pnma crystal structure. Therefore, it has been mandatory to use Cs(2)WO(4) and not K(2)WO(4) (space group C2/m) for which CSA data have previously been published, to achieve a reliable comparison with the (33)S and (77)Se data and thus allow assignment of the three different sets of (17)O NMR parameters to the three distinct oxygen sites (O(1,1), O(2), and O(3)) in the Pnma crystal structure of Cs(2)WO(4). Because the ambient temperature (17)O MAS NMR spectrum of Cs(2)WO(4) exhibits a dynamically broadened singlet, resorting to low-temperature (-83 °C) conditions at 21.15 T was necessary and resulted in a high-resolution (17)O MAS spectrum that allowed both (17)O quadrupole coupling and CSA parameters to be determined. As no quadrupole coupling data were obtained from the earlier investigation on K(2)WO(4), the present results for Cs(2)WO(4) prompted a reinvestigation of the (17)O MAS spectrum for K(2)WO(4), which actually also shows the presence of (17)O quadrupole couplings for all three oxygen sites. These data for Cs(2)WO(4) and K(2)WO(4) are consistent and result in unambiguous assignments of the parameters to the three distinct oxygen sites in their crystal structures.


Assuntos
Césio/química , Oxigênio/química , Compostos de Tungstênio/química , Temperatura Baixa , Espectroscopia de Ressonância Magnética , Isótopos de Oxigênio , Compostos de Tungstênio/síntese química
8.
Dalton Trans ; 40(16): 4212-6, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21387064

RESUMO

Reaction of the organometallic aqua ion [Cp*Ir(H(2)O)(3)](2+) with tert-butyl(trimethylsilyl)amine in acetone yielded a novel trinuclear (µ(3)-oxido)(µ(3)-imido)pentamethylcyclopentadienyliridium(III) complex, [(Cp*Ir)(3)(O)(N(t)Bu)](2+). Single crystal structure analyses show the complex can be isolated both in the double salt ((t)BuNH(3))[(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(3) (1) and in the simple triflate [(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(2) (2). The double salt is stabilized by hydrogen bonding between the tert-butylammonium ion and the three triflate anions. It is the first time that a trinuclear (µ(3)-oxido)(µ(3)-imido) transition metal complex has been structurally characterized.

10.
Chem Commun (Camb) ; 46(12): 2103-5, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20221506

RESUMO

Precise values are reported for a quite large (95)Mo quadrupole coupling and an unusually large (95)Mo chemical shift anisotropy in MoS(2), values that have been retrieved by analysis of a well-resolved, highly complex 14.1 T (95)Mo MAS NMR spectrum displaying both the central and satellite transitions.

11.
J Magn Reson ; 202(2): 173-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19945893

RESUMO

A strategy, involving (i) sensitivity enhancement for the central transition (CT) by population transfer (PT) employing WURST inversion pulses to the satellite transitions (STs) in natural abundance (33)S MAS NMR for two different MAS frequencies (nu(r)=5.0 and 10.0kHz) at 14.1T and (ii) a (33)S static QCPMG experiment at 19.6T, has allowed acquisition and analysis of very complex solid-state (33)S CT NMR spectra for the disordered tetrathioperrhenate anion ReS(4)(-) in [(C(2)H(5))(4)N][ReS(4)]. This strategy of different NMR experiments combined with spectral analysis/simulations has allowed determination of precise values for two sets of quadrupole coupling parameters (C(Q) and eta(Q)) assigned to the two different S sites for the four sulfur atoms in the ReS(4)(-) anion in the ratio S1:S2=1:3. These sets of C(Q), eta(Q) values for the S1 and S2 site are quite similar and the magnitudes of the quadrupole coupling constants (C(Q)=2.2-2.5MHz) are a factor of about three larger than observed for other tetrathiometalates A(2)MS(4) (A=NH(4), Cs, Rb and M=W, Mo). In addition, the spectral analysis also leads to a determination of the chemical shift anisotropy (CSA) parameters (delta(sigma) and eta(sigma)) for the S1 and S2 site, however, with much lower precisions (about 20% error margins) compared to those for C(Q), eta(Q), because the magnitudes of the two CSAs (i.e., delta(sigma)=60-90ppm) are about a factor of six smaller than observed for the other tetrathiometalates mentioned above. This large difference in the magnitudes of the anisotropic parameters C(Q) and delta(sigma) for the ReS(4)(-) anion, compared to those for the WS(4)(2-) and MoS(4)(2-) anions determined previously under identical experimental conditions, accounts for the increased complexity of the PT-enhanced (33)S MAS spectra observed for the ReS(4)(-) anion in this study. This difference in C(Q) also contributes significantly to the intensity distortions observed in the outer wings of the CTs when employing PT from the STs under conditions of slow-speed MAS.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Enxofre/química , Elementos de Transição/química , Algoritmos , Ânions , Anisotropia , Cristalização , Cristalografia por Raios X , Indicadores e Reagentes , Molibdênio/química , Padrões de Referência , Rênio/química , Isótopos de Enxofre/química , Tungstênio/química
12.
Phys Chem Chem Phys ; 11(32): 6981-6, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19652832

RESUMO

Population transfer from the satellite transitions to the central transition in solid-state (33)S MAS NMR, employing WURST inversion pulses, has led to detection of the most complex (33)S MAS NMR spectrum observed so far. The spectrum is that of (CH(3)NH(3))(2)WS(4) and consists of three sets of overlapping resonances for the three non-equivalent S atoms, in accord with its crystal structure. It has been fully analyzed in terms of three sets of (33)S quadrupole coupling and anisotropic/isotropic chemical shift parameters along with their corresponding set of three Euler angles describing the relative orientation of the tensors for these two interactions. The three sets of spectral parameters have been assigned to the three different sulfur sites in (CH(3)NH(3))(2)WS(4) by relating the changes observed for the spectral parameters to the changes in crystal structures in a comparison with the corresponding data for the isostructural (NH(4))(2)WS(4) analog.


Assuntos
Compostos de Amônio Quaternário/química , Compostos de Tungstênio/química , Espectroscopia de Ressonância Magnética
13.
Inorg Chem ; 48(5): 1787-9, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235936

RESUMO

Solid solutions of NH(4)(+) in Cs(2)WS(4) and Rb(2)WS(4) are obtained by precipitation/crystallization from aqueous solutions. By means of (14)N, (87)Rb, and (133)Cs magic angle spinning NMR, compositions and extraordinarily accurate NH(4)(+)-site preferences are established for these materials.


Assuntos
Césio/química , Compostos de Amônio Quaternário/química , Rubídio/química , Compostos de Tungstênio/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Soluções , Especificidade por Substrato
14.
J Magn Reson ; 190(2): 316-26, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18082436

RESUMO

The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state (33)S (spin I=3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH(4))(2)WS(4) and (NH(4))(2)MoS(4). These materials all exhibit (33)S quadrupole coupling constants (C(Q)) in the range 0.1-1.0 MHz, with precise C(Q) values being determined from analysis of the PT enhanced (33)S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I=3/2 nuclei with similar C(Q) values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance (33)S MAS NMR, a time saving which is extremely welcome for this important low-gamma nucleus.

15.
Chem Commun (Camb) ; (16): 1629-31, 2007 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-17530082

RESUMO

We report the first (33)S chemical shift anisotropy (CSA) data as obtained from a combined determination of (33)S CSA and quadrupole coupling parameters utilizing the observation of both the (33)S (I = 3/2) central and satellite transitions in a natural abundance (33)S MAS NMR study aimed at characterizing the two important tetrathiometallates (NH4)(2)MoS(4) and (NH4)(2)WS(4).

16.
J Magn Reson ; 185(1): 159-63, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17196856

RESUMO

Experimental and simulated 14N MAS NMR spectra of the NH4+ ions in the two polymorphs, mS60 and mP60, of (NH4)2MoO4 are used to illustrate that a long-term stability of rotor-controlled MAS frequencies to 0.1 Hz can be achieved using commercial instrumentation (MAS speed controller and 7.5 mm MAS probe with a single marked rotor) attached to a highly pressure-stabilized air supply. A new modification of the STARS simulation software employs a Gaussian distribution for the experimental spinning frequency around the frequency set for the MAS speed controller. A simulated spectrum is then obtained by summation of several calculated spectra for evenly spaced spinning frequencies around the set frequency with relative weight factors corresponding to the Gaussian distribution.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Nitrogênio/química , Simulação por Computador , Ondas de Rádio , Reprodutibilidade dos Testes , Rotação , Sensibilidade e Especificidade
17.
Inorg Chem ; 45(26): 10873-81, 2006 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-17173446

RESUMO

The unique high-resolution feature offered by 14N magic-angle spinning (MAS) NMR spectroscopy of ammonium ions has been used to characterize the crystal structures of various ammonium molybdates by their 14N quadrupole coupling parameters, i.e., CQ, the quadrupole coupling constant, and etaQ, the asymmetry parameter. Two polymorphs of diammonium monomolybdate, (NH4)2MoO4, recently structurally characterized by single-crystal X-ray diffraction (XRD) and named mS60 and mP60, show distinct but different 14N MAS NMR spectra from each of which two sets of characteristic 14N CQ and etaQ values have been obtained. Similarly, the well-characterized ammonium polymolybdates (NH4)2Mo2O7, (NH4)6Mo7O24.4H2O, and (NH4)6Mo8O27.4H2O also give rise to distinct and characteristic 14N MAS NMR spectra. In particular, it is noted that simulation of the experimental (NH4)6Mo7O24.4H2O spectrum requires an iterative fit with six independent NH4+ sites. For the slow spinning frequencies employed (nu(r) = 1500-3000 Hz), all 14N MAS NMR spectra of the ammonium molybdates in this study are fingerprints of their identity. These different 14N MAS NMR fingerprints are shown to be an efficient tool in qualitative and quantitative assessment of the decomposition of (NH4)2MoO4 in humid air. Finally, by a combination of the 14N and 95Mo MAS NMR experiments performed here, it has become clear that a recent report of the 95Mo MAS spectra and data for the mS60 and mP60 polymorphs of (NH4)2MoO4 are erroneous because the sample examined had decomposed to (NH4)2Mo2O7.

18.
Inorg Chem ; 43(11): 3327-8, 2004 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15154790

RESUMO

Reaction between the cluster salts [(eta(5)-Cp')(3)M(3)S(4)][pts] (M = Mo, W; Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) and [Co(2)(CO)(8)] yielded the electroneutral clusters [(eta(5)-Cp')(3)M(3)S(4)Co(CO)]. The molecular structure of [(eta(5)-Cp')(3)W(3)S(4)Co(CO)] was determined by single-crystal X-ray diffraction methods. The unprecedented 60 electron W(3)S(4)Co cluster completes a homologous series of heterobimetallic clusters, [(eta(5)-Cp')(3)M(3)S(4)Co(CO)] (M = Cr, Mo, W), containing a cubane-like core motif.

19.
J Am Chem Soc ; 126(15): 4926-33, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15080698

RESUMO

The first observations of the complete manifold of spinning sidebands (ssbs) including both the central and satellite transitions in (51)V MAS NMR spectra of surface vanadia nanoparticles on titania in DeNO(x) catalysts are presented. (51)V quadrupole coupling and chemical shift anisotropy parameters for the dominating vanadia structure are determined from (51)V MAS NMR spectra recorded at 9.4 and 14.1 T. Based on correlations previously established between (51)V NMR parameters and crystal structure data for inorganic vanadates, the NMR data are consistent with vanadium in a distorted octahedral oxygen coordination environment for the so-called strongly bonded vanadia species on the surface. The investigation includes two vanadia-titania model catalysts and six industrial-type DeNO(x) catalysts.

20.
Chem Commun (Camb) ; (8): 958-9, 2003 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-12744318

RESUMO

Mesoporous zeolite single crystals with intracrystalline mesopores and metal oxide particles located in the zeolite mesopore are characterised by direct TEM stereo-imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA