Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0274404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084043

RESUMO

As the Latin name annua implies, the species Poa annua L. is thought to have an annual life cycle. Yet, there are many reports in literature of P. annua persisting as a perennial. Considering that P. annua senescence patterns do not align with other true annual species, we hypothesized that P. annua is similar to other perennial, C3 turfgrass species that are subject to a confluence of environmental factors that can cause mortality. Four experiments were conducted in Knoxville, TN with the objective of determining environmental factors lethal to P. annua. A field monitoring study assessed 100 P. annua plants across ten grassland micro-environments from May to October 2020. Forty plants survived the summer and confirmed the existence of perennial P. annua ecotypes. Analysis of environmental factors at the time of plant death indicated soil moisture, soil temperature, and pathogenic infection were associated with mortality. A series of glasshouse or field experiments were conducted to investigate the effects of each factor on P. annua mortality. Soil moisture and soil temperature were not lethal to P. annua in the glasshouse, except under extreme conditions not typical in the field. A field study assessed mortality of plants from pathogenic infection and indicated that P. annua plants treated with fungicide throughout the summer survived year-round, whereas plants not receiving fungicide applications senesced. These findings support our hypothesis that P. annua is of a perennial life cycle, which can be influenced by environmental conditions. We suggest that the name P. annua is likely a misnomer based on its modern interpretation.


Assuntos
Fungicidas Industriais , Poa , Fungicidas Industriais/farmacologia , Solo
2.
Pest Manag Sci ; 78(2): 499-505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34553491

RESUMO

BACKGROUND: Turfgrass managers reported poor Eleusine indica control following applications of the mitosis-inhibiting herbicide dithiopyr in cool-season turfgrass. Field, glasshouse, and laboratory experiments were conducted to understand the response of these biotypes to dithiopyr and prodiamine. RESULTS: In field experiments at two locations with putative dithiopyr-resistant E. indica, preemergence applications of dithiopyr provided no E. indica control. Single applications of the protoporphyrinogen oxidase (PPO)-inhibitor, oxadiazon, provided > 85% control at these locations. When subjected to agar-based bioassays, root growth of putative resistant biotypes planted with 0.01 mmol L-1 dithiopyr was slightly reduced (< 25%) whereas roots were completely inhibited in the susceptible biotype. Glasshouse whole plant rate-response experiments found that the cytochrome P450 inhibitor, piperonyl butoxide (PBO), did not increase the sensitivity of these putative resistant biotypes to dithiopyr. Sequencing of α-tubulin 1 (TUA1) revealed a Leu-136-Phe substitution in both dithiopyr-resistant populations. CONCLUSION: Eleusine indica biotypes with resistance to dithiopyr are present in cool-season turfgrass systems in the United States. Resistance is possibly related to a single nucleotide polymorphism (SNP) of an α-tubulin gene. If turfgrass managers suspect resistance to dithiopyr, oxadiazon can still be an effective alternative for preemergence control. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Eleusine , Herbicidas , Eleusine/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Piridinas , Estações do Ano
3.
Sci Rep ; 11(1): 18960, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556772

RESUMO

Turfgrasses are perennial components of urban greenspaces found in parks, recreational areas, golf courses, sports fields, and lawns that confer many ecosystem services. A copious seed producer, Poa annua is the most troublesome weed of turfgrass and continually threatens the ecosystem services provided by urban greenspaces. Field research was conducted in Knoxville, TN to better understand environmental conditions triggering P. annua seedling emergence patterns to assist managers with optimally timing interventions-both chemical and non-chemical-for control. Fluctuations in cooling degree day (CDD21C) accumulation accounted for 82% of the variance in yearly cumulative P. annua emergence data collected in a single irrigated sward of hybrid bermudagrass [C. dactylon (L.) Pers. x. C. transvaalensis Burtt-Davy]. However, non-linear models using CDD21C data developed ex post were not able to accurately predict P. annua emergence patterns ex ante. In both years, P. annua emergence changed most rapidly between the 40th and 43rd week of the year when seven-day mean soil temperature and rainfall were 18.9 °C and 12.7 mm, respectively. Future research should explore the efficacy of herbicide mixtures applied when P. annua emergence is most rapidly changing in lieu of developing models to predict when specific emergence thresholds occur.

4.
Pest Manag Sci ; 77(11): 4993-5000, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34218510

RESUMO

BACKGROUND: Poa annua is a pervasive grassy, self-pollinating, weed that has evolved resistance to 10 different herbicide modes-of-action, third most of all weed species. We investigated constitutive overexpression of genes associated with non-target site resistance (NTSR) in POAAN-R3 and the response of those genes when treated with trifloxysulfuron despite the biotype having a known target site mutation in acetolactate synthase (ALS). RESULTS: Despite having an ALS target site mutation, POAAN-R3 still had a transcriptomic response to herbicide application that differed from a susceptible biotype. We observed differential expression of genes associated with transmembrane transport and oxidation-reduction activities, with differences being most pronounced prior to herbicide treatment. CONCLUSIONS: In the P. annua biotype we studied with confirmed target site resistance to ALS inhibitors, we also observed constitutive expression of genes regulating transmembrane transport, as well as differential expression of genes associated with oxidative stress after treatment with trifloxysulfuron. This accumulation of mechanisms, in addition to the manifestation of target site resistance, could potentially increase the chance of survival when plants are challenged by different modes of action.


Assuntos
Acetolactato Sintase , Herbicidas , Poa , Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Proteínas de Plantas/genética
5.
Sci Rep ; 10(1): 20579, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239643

RESUMO

Experiments were conducted to understand environmental effects on efficacy of herbicides used to control goosegrass (Eleusine indica L. Gaertn.). Herbicides were applied to goosegrass maintained at soil moisture contents (VMC) of < 12%, 12 to 20%, or > 20%. Herbicides included fenoxaprop-p-ethyl (140 g ha-1), topramezone (25 g ha-1), foramsulfuron (44 g ha-1), 2,4-D + dicamba + MCPP + carfentrazone (860 + 80 + 270 + 28 g ha-1), and thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl (22 + 45 + 69 g ha-1). Goosegrass control increased as VMC increased. Vapor pressure deficit (VPD) and air temperature were manipulated to determine effects of evaporative demand on foramsulfuron. Effects of soil drying were also studied following foramsulfuron application. Reductions in transpiration rate (TR) and leaf area were greatest with foramsulfuron applications to goosegrass in silt-loam under high evaporative demand (3 kPa VPD, 38 °C). Foramsulfuron had no effect on goosegrass in silica-sand regardless of evaporative demand. TR dropped to 0.2 mmh-1 within eight days after application to goosegrass in silt-loam compared to 18 days in silica-sand. Overall, foramsulfuron efficacy on goosegrass was maximized under conditions of high soil moisture and evaporative demand, and may be reduced in sandy soils that hold less water.

6.
Pest Manag Sci ; 76(6): 2049-2057, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31943704

RESUMO

BACKGROUND: Indaziflam is an alkylazine herbicide used to control annual bluegrass (Poa annua L.). Several locations in the southeastern USA reported poor annual bluegrass control following treatment with indaziflam during autumn 2015. A series of controlled environment experiments were conducted to confirm putative resistance to indaziflam in annual bluegrass collected from these field locations. RESULTS: Indaziflam (25 g ha-1 ) effectively controlled all putative-resistant annual bluegrass collections when applied preemergence (PRE), but was ineffective when applied early-postemergence (< 2.5 cm plant height; BBCH scale = 1; EPOST). In agarose-based plate assays, EPOST I50 values for putative-resistant collections ranged from 2424 to 4305 pm compared with 633 pm for the herbicide-susceptible control; therefore, resistance indexes (R/S) ranged from 3.8 to 6.8. Resistant collections were not controlled by foramsulfuron, flumioxazin, glyphosate, glufosinate, metribuzin, pronamide, or simazine applied EPOST. Indaziflam content in herbicide-susceptible annual bluegrass was greater than a resistant collection from 0 to 10 days after treatment (DAT). Susceptibility was not restored when resistant collections were treated with indaziflam plus 1-aminobenzotriazole (10 mg L-1 ), tebuconazole (1510 g ha-1 ), or malathion (400 g ha-1 ). CONCLUSIONS: This is a first report of resistance to indaziflam in any plant. Additionally, we confirm that these annual bluegrass collections are resistant to several other herbicidal modes-of-action. It is unclear if this multi-herbicide resistance is due to a single resistance gene, multiple resistance genes, non-target site mechanisms, or a combination thereof. Additional research to better understand resistance mechanisms in these annual bluegrass collections is warranted. © 2020 Society of Chemical Industry.


Assuntos
Poa , Herbicidas , Indenos , Triazinas
7.
J Agric Food Chem ; 66(12): 3086-3092, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29432005

RESUMO

Herbicides are pesticides used to eradicate unwanted plants in both crop and non-crop environments. These chemistries are toxic to weeds due to inhibition of key enzymes or disruption of essential biochemical processes required for weedy plants to survive. Crops can survive systemic herbicidal applications through various forms of detoxification, including metabolism that can be enhanced by safeners. Field studies were conducted near Louisville, Tennessee and Painter, Virginia to determine how the herbicides mesotrione, topramezone, nicosulfuron, and atrazine applied with or without the safener isoxadifen-ethyl would impact the nutritional quality of "Incredible" sweet corn ( Zea mays L. var. rugosa). Several herbicide treatments increased the uptake of the mineral elements phosphorus, magnesium, and manganese by 8-75%. All herbicide treatments increased protein content by 4-12%. Applied alone, nicosulfuron produced similar levels of saturated, monounsaturated, and polyunsaturated fatty acids when compared to the nontreated check, but when applied with isoxadifen-ethyl, fatty acids increased 8 to 44% relative to the check or control. Nicosulfuron plus isoxadifen-ethyl or topramezone or the combination of all three actives increased the concentrations of fructose and glucose (40-68%), whereas reducing levels of maltose or sucrose when compared to the nontreated check (-15 to -21%). Disruptions in biochemical pathways in plants due to the application of herbicides, safeners, or other pesticides have the potential to alter the nutrient quality, taste, and overall plant health associated with edible crops.


Assuntos
Herbicidas/farmacologia , Zea mays/química , Zea mays/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cicloexanonas/farmacologia , Ácidos Graxos/metabolismo , Contaminação de Alimentos/análise , Magnésio/metabolismo , Manganês/metabolismo , Valor Nutritivo/efeitos dos fármacos , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Compostos de Sulfonilureia/farmacologia , Zea mays/metabolismo
8.
Hereditas ; 155: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28827983

RESUMO

BACKGROUND: Interspecific hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] is one of the most widely used grasses on golf courses, with cultivars derived from 'Tifgreen' or 'Tifdwarf' particularly used for putting greens. Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars. Beginning in 2013, off-type and desirable hybrid bermudagrass samples were collected from golf course putting greens in the southeastern United States and genetically and phenotypically characterized using genotyping-by-sequencing and morphology. RESULTS: Genotyping-by-sequencing determined that 11% (5) of off-type and desirable samples from putting greens were genetically divergent from standard cultivars such as Champion, MiniVerde, Tifdwarf, TifEagle, and Tifgreen. In addition, genotyping-by-sequencing was unable to genetically distinguish all standard cultivars from one another due to their similar origin and clonal propagation; however, over 90,000 potentially informative nucleotide variants were identified among the triploid hybrid cultivars. CONCLUSIONS: Although few genetic differences were found in this research, samples harvested from golf course putting greens had variable morphology and were clustered into three distinct phenotypic groups. The majority of off-type grasses in hybrid bermudagrass putting greens were genetically similar with variable morphological traits. Off-type grasses within golf course putting greens have the potential to compromise putting surface functionality and aesthetics.


Assuntos
Cynodon/genética , Hibridização Genética , DNA de Plantas/genética , Variação Genética , Genótipo , Golfe , Fenótipo , Análise de Sequência de DNA
9.
PLoS One ; 11(12): e0168086, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936174

RESUMO

2,4-dimethylamine salt (2,4-D) is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis) and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L.), which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time) and PM (14:00) sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied) compared to dormant hybrid bermudagrass (2.3 to 2.9%), as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%). Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Poaceae/química
10.
Planta ; 244(4): 761-73, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27448290

RESUMO

MAIN CONCLUSION: Some interspecific hybrid bermudagrass cultivars used on golf course putting greens are genetically unstable, which has caused phenotypically different off-type grasses to occur in production nurseries and putting surfaces. Management practices to reduce the occurrence of off-type grasses in putting green surfaces and the effect they can have on putting quality and performance need to be researched until genetically stable cultivars are developed. Golf course putting green surfaces in subtropical and tropical climates are typically planted with an interspecific hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy), because of the superior putting quality and performance of these cultivars. 'Tifgreen' was one of the first interspecific hybrids developed for putting green use in lieu of common bermudagrass. However, off-type grasses began appearing in established Tifgreen stands soon after commercial release. Off-type grasses are those with different morphology and performance when compared to the surrounding, desirable cultivar. Off-types have the potential to decrease surface uniformity, which negatively affects putting surface quality. However, several unique off-types from Tifgreen have been selected as commercial cultivars, the first being 'Tifdwarf'; then 'Floradwarf', 'MS-Supreme', 'Pee Dee-102', and 'TL-2', identified later. The cultivars 'Champion Dwarf', 'P-18', 'RJT', and 'Emerald Dwarf' were subsequently selected as off-types in Tifdwarf. The naturally occurring off-types and cultivars that have been identified within the Tifgreen family have widely differing phenotypes; however, they are reported to be genetically similar, supporting the hypothesis that their occurrence is a result of somatic mutations. Genetic instability in currently available commercial cultivars is likely to lead to the continued presence of off-types in production nurseries and putting greens. Additional research is needed to understand the nature of genetic instability in Tifgreen-derived cultivars and how to manage its consequences to develop new cultivars, but also strategies for eradication of off-types in pedigree nursery production and end-site putting greens.


Assuntos
Cynodon/genética , Variação Genética , Golfe , Poaceae/genética , Cor , Cynodon/classificação , Cynodon/crescimento & desenvolvimento , Hibridização Genética , Fenótipo , Filogenia , Pigmentação/genética , Poaceae/crescimento & desenvolvimento , Especificidade da Espécie
11.
PLoS One ; 11(2): e0148992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863005

RESUMO

Research to date has confirmed 2,4-D residues may dislodge from turfgrass; however, experiments have not been conducted on hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis), the most common athletic field turfgrass in subtropical climates. More specifically, previous research has not investigated the effect of post-application irrigation on dislodgeable 2,4-D residues from hybrid bermudagrass and across turfgrass species, research has been nondescript regarding sample time within a d (TWD) or conducted in the afternoon when the turfgrass canopy is dry, possibly underestimating potential for dislodgement. The effect of irrigation and TWD on 2,4-D dislodgeability was investigated. Dislodgeable 2,4-D amine was reduced > 300% following irrigation. From 2 to 7 d after treatment (DAT), ≤ 0.5% of applied 2,4-D was dislodged from irrigated turfgrass, while ≤ 2.3% of applied 2,4-D was dislodged when not irrigated. 2,4-D dislodgeability decreased as TWD increased. Dislodgeable 2,4-D residues declined to < 0.1% of the applied at 1 DAT- 13:00, and increased to 1 to 3% of the applied 2 DAT- 5:00, suggesting 2,4-D re-suspended on treated turfgrass vegetation overnight. In conclusion, irrigating treated turfgrass reduced dislodgeable 2,4-D. 2,4-D dislodgeability increased as TWD decreased, which was attributed to non-precipitation climatic conditions favoring turfgrass canopy wetness. This research will improve turfgrass management practices and research designed to minimize human 2,4-D exposure.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Cynodon/química , Herbicidas/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Ácido 2,4-Diclorofenoxiacético/química , Irrigação Agrícola/instrumentação , Irrigação Agrícola/métodos , Vestuário , Cynodon/classificação , Exposição Ambiental , Contaminação de Equipamentos , Herbicidas/química , Humanos , Umidade , Hibridização Genética , Resíduos de Praguicidas/química , Folhas de Planta/química , Distribuição Aleatória , Solubilidade , Esportes , Equipamentos Esportivos , Propriedades de Superfície , Temperatura , Fatores de Tempo , Água
12.
Planta ; 243(1): 149-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26353912

RESUMO

MAIN CONCLUSION: This is a first report of an Ala-205-Phe substitution in acetolactate synthase conferring resistance to imidazolinone, sulfonylurea, triazolopyrimidines, sulfonylamino-carbonyl-triazolinones, and pyrimidinyl (thio) benzoate herbicides. Resistance to acetolactate synthase (ALS) and photosystem II inhibiting herbicides was confirmed in a population of allotetraploid annual bluegrass (Poa annua L.; POAAN-R3) selected from golf course turf in Tennessee. Genetic sequencing revealed that seven of eight POAAN-R3 plants had a point mutation in the psbA gene resulting in a known Ser-264-Gly substitution on the D1 protein. Whole plant testing confirmed that this substitution conferred resistance to simazine in POAAN-R3. Two homeologous forms of the ALS gene (ALSa and ALSb) were detected and expressed in all POAAN-R3 plants sequenced. The seven plants possessing the Ser-264-Gly mutation conferring resistance to simazine also had a homozygous Ala-205-Phe substitution on ALSb, caused by two nucleic acid substitutions in one codon. In vitro ALS activity assays with recombinant protein and whole plant testing confirmed that this Ala-205-Phe substitution conferred resistance to imidazolinone, sulfonylurea, triazolopyrimidines, sulfonylamino-carbonyl- triazolinones, and pyrimidinyl (thio) benzoate herbicides. This is the first report of Ala-205-Phe mutation conferring wide spectrum resistance to ALS inhibiting herbicides.


Assuntos
Acetolactato Sintase/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Poa/genética , Acetolactato Sintase/genética , Alanina/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Homozigoto , Dados de Sequência Molecular , Mutação , Fenilalanina/metabolismo , Poa/efeitos dos fármacos , Poa/enzimologia , Proteínas Recombinantes , Análise de Sequência de DNA
13.
PLoS One ; 10(7): e0130947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186714

RESUMO

Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 µM), malathion (70 µm and 1000 g ha(-1)), or cloquintocet-mexyl (70 µM and 1000 g ha(-1)) prior to topramezone (8 g ha(-1)) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 µM and 1000 g ha(-1)) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass.


Assuntos
Agrostis/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Herbicidas/farmacologia , Malation/farmacologia , Pirazóis/farmacologia , Triazóis/farmacologia , Adaptação Fisiológica , Agrostis/enzimologia , Agrostis/crescimento & desenvolvimento , Biomassa , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Quinolinas/farmacologia
14.
J Appl Biomech ; 31(5): 309-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25950515

RESUMO

Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.


Assuntos
Articulação do Tornozelo/fisiologia , Futebol Americano/fisiologia , Articulação do Joelho/fisiologia , Movimento/fisiologia , Sapatos , Fenômenos Biomecânicos , Pisos e Cobertura de Pisos , Voluntários Saudáveis , Humanos , Perna (Membro)/fisiologia , Masculino , Equipamentos Esportivos , Propriedades de Superfície , Inquéritos e Questionários , Adulto Jovem
15.
Sports Biomech ; 13(4): 362-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25301011

RESUMO

Multiple playing surfaces and footwear used in American football warrant a better understanding of relationship between different combinations of turf and footwear. The purpose of this study was to examine effects of shoe and stud types on ground reaction force (GRF) and ankle and knee kinematics of a 180° cut and a single-leg 90° land-cut on synthetic turf. Fourteen recreational football players performed five trials of the 180° cut and 90° land-cut in three shoe conditions: non-studded running shoe, and football shoe with natural and synthetic turf studs. Variables were analyzed with a 3 × 2 (shoe × movement) repeated measures analysis of variance (p < 0.05). Peak vertical GRF (p < 0.001) and loading rate (p < 0.001) were greater during 90° land-cut than 180° cut. For 180° cut, natural turf studs produced smaller peak medial GRFs compared to synthetic turf studs and non-studded shoe (p = 0.012). For land-cut, peak eversion velocity was reduced in running shoes compared to natural (p = 0.016) and synthetic (p = 0.002) turf studs. The 90° land-cut movement resulted in greater peak vertical GRF and loading rate compared to the 180° cut. Overall, increased GRFs in the 90° land-cut movement may increase the chance of injury.


Assuntos
Futebol Americano/fisiologia , Movimento/fisiologia , Sapatos , Equipamentos Esportivos , Adolescente , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Pisos e Cobertura de Pisos , Humanos , Imageamento Tridimensional , Articulação do Joelho/fisiologia , Propriedades de Superfície , Gravação em Vídeo , Adulto Jovem
16.
J Agric Food Chem ; 62(2): 329-36, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24354444

RESUMO

One attractive strategy to discover more active and/or crop-selective herbicides is to make structural changes to currently registered compounds. This strategy is especially appealing for those compounds with limited herbicide resistance and whose chemistry is accompanied with transgenic tools to enable herbicide tolerance in crop plants. Bromoxynil is a photosystem II (PSII) inhibitor registered for control of broadleaf weeds in several agronomic and specialty crops. Recently at the University of Tennessee-Knoxville several analogues of bromoxynil were synthesized including a previously synthesized pyridine (2,6-dibromo-5-hydroxypyridine-2-carbonitrile sodium salt), a novel pyrimidine (4,6-dibromo-5-hydroxypyrimidine-2-carbonitrile sodium salt), and a novel pyridine N-oxide (2,6-dibromo-1-oxidopyridin-1-ium-4-carbonitrile). These new analogues of bromoxynil were also evaluated for their herbicidal activity on soybean (Glycine max), cotton (Gossypium hirsutum), redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), large crabgrass (Digitaria sanguinalis), and pitted morningglory ( Ipomoea lacunose ) when applied at 0.28 kg ha(-1). A second study was conducted on a glyphosate-resistant weed (Amaranthus palmeri) with the compounds being applied at 0.56 kg ha(-1). Although all compounds were believed to inhibit PSII by binding in the quinone binding pocket of D1, the pyridine and pyridine-N-oxide analogues were clearly more potent than bromoxynil on Amaranthus retroflexus. However, application of the pyrimidine herbicide resulted in the least injury to all species tested. These variations in efficacy were investigated using molecular docking simulations, which indicate that the pyridine analogue may form a stronger hydrogen bond in the pocket of the D1 protein than the original bromoxynil. A pyridine analogue was able to control the glyphosate-resistant Amaranthus palmeri with >80% efficacy. The pyridine analogues of bromoxynil showed potential to have a different weed control spectrum compared to bromoxynil. A pyridine analogue of bromoxynil synthesized in this research controlled several weed species greater than bromoxynil itself, potentially due to enhanced binding within the PSII binding pocket. Future research should compare this analogue to bromoxynil using optimized formulations at higher application rates.


Assuntos
Herbicidas/síntese química , Herbicidas/farmacologia , Nitrilas/química , Piridinas/síntese química , Pirimidinas/síntese química , Amaranthus/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Plantas Daninhas/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Controle de Plantas Daninhas/métodos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA