Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2006): 20231130, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700645

RESUMO

Understanding how anthropization impacts the assembly of species onto communities is pivotal to go beyond the observation of biodiversity changes and reveal how disturbances affect the environmental and biotic processes shaping biodiversity. Here, we propose a simple framework to measure the assembly processes underpinning functional convergence/divergence patterns. We applied this framework to northern Amazonian fish communities inventoried using environmental DNA in 35 stream sites and 64 river sites. We found that the harsh and unstable environmental conditions characterizing streams conveyed communities towards functional convergence, by filtering traits related to food acquisition and, to a lower extent, dispersal. Such environmental filtering also strengthened competition by excluding species having less competitive food acquisition traits. Instead, random species assembly was more marked in river communities, which may be explained by the downstream position of rivers facilitating the dispersion of species. Although fish assembly rules differed between streams and river fish communities, anthropogenic disturbances reduced functional divergence in both ecosystems, with a reinforcement of both environmental filtering and weaker competitor exclusion. This may explain the substantial biodiversity alterations observed under slight deforestation levels in Neotropical freshwater ecosystems and underlines their vulnerability to anthropic disturbances that not only affect species persistence but also modify community assembly rules.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Rios , Água Doce , Efeitos Antropogênicos
2.
Nat Commun ; 14(1): 2332, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087448

RESUMO

While biological invasions are recognized as a major threat to global biodiversity, determining non-native species' abilities to establish in new areas (species invasiveness) and the vulnerability of those areas to invasions (community invasibility) is challenging. Here, we use trait-based analysis to profile invasive species and quantify the community invasibility for >1,800 North American freshwater fish communities. We show that, in addition to effects attributed to propagule pressure caused by human intervention, species with higher fecundity, longer lifespan and larger size tend to be more invasive. Community invasibility peaks when the functional distance among native species was high, leaving unoccupied functional space for the establishment of potential invaders. Our findings illustrate how the functional traits of non-native species determining their invasiveness, and the functional characteristics of the invaded community determining its invasibility, may be identified. Considering those two determinants together will enable better predictions of invasions.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Espécies Introduzidas , Água Doce , Peixes , América do Norte
3.
Glob Chang Biol ; 29(7): 1741-1758, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36408670

RESUMO

Freshwater ecosystems are among the most endangered ecosystem in the world. Understanding how human activities affect these ecosystems requires disentangling and quantifying the contribution of the factors driving community assembly. While it has been largely studied in temperate freshwaters, tropical ecosystems remain challenging to study due to the high species richness and the lack of knowledge on species distribution. Here, the use of eDNA-based fish inventories combined to a community-level modelling approach allowed depicting of assembly rules and quantifying the relative contribution of geographic, environmental and anthropic factors to fish assembly. We then used the model predictions to map spatial biodiversity and assess the representativity of sites surveyed in French Guiana within the EU Water Framework Directive (WFD) and highlighted areas that should host unique freshwater fish assemblages. We demonstrated a mismatch between the taxonomic and functional diversity. Taxonomic assemblages between but also within basins were mainly the results of dispersal limitation resulting from basin isolation and natural river barriers. Contrastingly, functional assemblages were ruled by environmental and anthropic factors. The regional mapping of fish diversity indicated that the sites surveyed within the EU WFD had a better representativity of the regional functional diversity than taxonomic diversity. Importantly, we also showed that the assemblages expected to be the most altered by anthropic factors were the most poorly represented in terms of functional diversity in the surveyed sites. The predictions of unique functional and taxonomic assemblages could, therefore, guide the establishment of new survey sites to increase fish diversity representativity and improve this monitoring program.


Assuntos
DNA Ambiental , Ecossistema , Animais , Humanos , Efeitos Antropogênicos , Biodiversidade , Peixes/fisiologia , Monitoramento Ambiental
4.
Conserv Biol ; 37(3): e14036, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424856

RESUMO

The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43-0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25-29% of fish habitats, 16-23% of species, and 30-31% of priority conservation areas. Moreover, 6-21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.


Potenciación de la conservación de peces de agua dulce con mapeos de distribución de alta resolución a lo largo de un territorio extenso Resumen La falta de mapas de distribución en alta resolución para las especies de agua dulce en grandes extensiones es un reto importante para la conservación mundial de la biodiversidad. Diseñamos un marco simple para delinear la distribución de los peces de agua dulce en un mapa de drenaje en alta resolución basado en los modelos apilados de la distribución de las especies y la información de expertos. Aplicamos este marco a toda la ictiofauna de agua dulce en China (>1600 especies) para analizar los patrones en alta resolución de la biodiversidad y revelar los conflictos potenciales entre la biodiversidad de agua dulce y las perturbaciones antropogénicas. Todas las correlaciones entre los patrones espaciales de las facetas de la biodiversidad (riqueza de especies, endemismo y diversidad filogenética) fueron importantes (r = 0.43-0.98, p < 0.001). Las áreas con valores altos de diferentes facetas de la biodiversidad se traslaparon con las perturbaciones antropogénicas. Las áreas protegidas existentes que actualmente cubren el 22% del territorio de China, protegen 25-2% del hábitat de los peces, 16-23% de las especies y 30-31% de las áreas de conservación prioritarias. Además, 6-21% de las especies se encontraban totalmente desprotegidas. Estos resultados sugieren que se necesita extender la red de áreas protegidas para asegurar la conservación de los peces de agua dulce de China y los bienes y servicios que proporcionan. En concreto, los niveles medio a bajo de los grandes ríos y sus lagos asociados del noreste al suroeste de China albergaron los ensambles de especies más diversos y por lo tanto deberían ser el objetivo de las futuras expansiones de la red de áreas protegidas. De forma más generalizada, nuestro marco, el cual puede usarse para trazar mapas en alta resolución de la biodiversidad de agua dulce al combinar los datos de presencia de las especies y el conocimiento de los expertos sobre su distribución, proporciona un método eficiente para diseñar las áreas protegidas sin importar el ecosistema, región o grupo taxonómico considerado.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Filogenia , Conservação dos Recursos Naturais/métodos , Peixes , Lagos
5.
Nat Commun ; 13(1): 3290, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672313

RESUMO

Assessing the impact of human activity on ecosystems often links local biodiversity to disturbances measured within the same locality. However, remote disturbances may also affect local biodiversity. Here, we used environmental DNA metabarcoding to evaluate the relationships between vertebrate biodiversity (fish and mammals) and disturbance intensity in two Amazonian rivers. Measurements of anthropic disturbance -here forest cover losses- were made from the immediate vicinity of the biodiversity sampling sites to up to 90 km upstream. The findings suggest that anthropization had a spatially extended impact on biodiversity. Forest cover losses of <11% in areas up to 30 km upstream from the biodiversity sampling sites were linked to reductions of >22% in taxonomic and functional richness of both terrestrial and aquatic fauna. This underscores the vulnerability of Amazonian biodiversity even to low anthropization levels. The similar responses of aquatic and terrestrial fauna to remote disturbances indicate the need for cross-ecosystem conservation plans that consider the spatially extended effects of anthropization.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Florestas , Mamíferos/genética , Vertebrados/genética
6.
Sci Rep ; 12(1): 10247, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715444

RESUMO

High-throughput DNA sequencing is becoming an increasingly important tool to monitor and better understand biodiversity responses to environmental changes in a standardized and reproducible way. Environmental DNA (eDNA) from organisms can be captured in ecosystem samples and sequenced using metabarcoding, but processing large volumes of eDNA data and annotating sequences to recognized taxa remains computationally expensive. Speed and accuracy are two major bottlenecks in this critical step. Here, we evaluated the ability of convolutional neural networks (CNNs) to process short eDNA sequences and associate them with taxonomic labels. Using a unique eDNA data set collected in highly diverse Tropical South America, we compared the speed and accuracy of CNNs with that of a well-known bioinformatic pipeline (OBITools) in processing a small region (60 bp) of the 12S ribosomal DNA targeting freshwater fishes. We found that the taxonomic labels from the CNNs were comparable to those from OBITools, with high correlation levels for the composition of the regional fish fauna. The CNNs enabled the processing of raw fastq files at a rate of approximately 1 million sequences per minute, which was about 150 times faster than with OBITools. Given the good performance of CNNs in the highly diverse ecosystem considered here, the development of more elaborate CNNs promises fast deployment for future biodiversity inventories using eDNA.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental/genética , Monitoramento Ambiental , Peixes/genética , Redes Neurais de Computação
7.
Mol Ecol Resour ; 22(4): 1274-1283, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34724352

RESUMO

Environmental DNA (eDNA) is gaining a growing popularity among scientists but its applicability to biodiversity research and management remains limited in river systems by the lack of knowledge about the spatial extent of the downstream transport of eDNA. Here, we assessed the ability of eDNA inventories to retrieve spatial patterns of fish assemblages along two large and species-rich Neotropical rivers. We first examined overall community variation with distance through the distance decay of similarity and compared this pattern to capture-based samples. We then considered previous knowledge on individual species distributions, and compared it to the eDNA inventories for a set of 53 species. eDNA collected from 28 sites in the Maroni and 25 sites in the Oyapock rivers permitted to retrieve a decline of species similarity with increasing distance between sites. The distance decay of similarity derived from eDNA was similar and even more pronounced than that obtained with capture-based methods (gill-nets). In addition, the species upstream-downstream distribution range derived from eDNA matched to the known distribution of most species. Our results demonstrate that environmental DNA does not represent an integrative measure of biodiversity across the whole upstream river basin but provides a relevant picture of local fish assemblages. Importantly, the spatial signal gathered from eDNA was therefore comparable to that gathered with local capture-based methods, which describes fish fauna over a few hundred metres.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Ecossistema , Monitoramento Ambiental/métodos , Peixes/genética , Rios
8.
Nat Commun ; 12(1): 5162, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453040

RESUMO

Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção/estatística & dados numéricos , Vertebrados/classificação , Animais , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Vertebrados/crescimento & desenvolvimento
9.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771870

RESUMO

Although one-quarter of plant and vertebrate species are threatened with extinction, little is known about the potential effect of extinctions on the global diversity of ecological strategies. Using trait and phylogenetic information for more than 75,000 species of vascular plants, mammals, birds, reptiles, amphibians, and freshwater fish, we characterized the global functional spectra of each of these groups. Mapping extinction risk within these spectra showed that larger species with slower pace of life are universally threatened. Simulated extinction scenarios exposed extensive internal reorganizations in the global functional spectra, which were larger than expected by chance for all groups, and particularly severe for mammals and amphibians. Considering the disproportionate importance of the largest species for ecological processes, our results emphasize the importance of actions to prevent the extinction of the megabiota.

10.
Mol Ecol Resour ; 21(6): 1875-1888, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33787010

RESUMO

Environmental DNA (eDNA) metabarcoding has emerged as one of the most efficient methods to assess aquatic species presence. While the method can in theory be used to investigate nonaquatic fauna, its development for inventorying semi-aquatic and terrestrial fauna is still at an early stage. Here we investigated the potential of aquatic eDNA metabarcoding for inventorying mammals in Neotropical environments, be they aquatic, semi-aquatic or terrestrial. We collected aquatic eDNA in 96 sites distributed along three Guianese watersheds and compared our inventories to expected species distributions and field observations derived from line transects located throughout French Guiana. Species occurrences and emblematic mammalian fauna richness patterns were consistent with the expected distribution of fauna and our results revealed that aquatic eDNA metabarcoding brings additional data to line transect samples for diurnal nonaquatic (terrestrial and arboreal) species. Aquatic eDNA also provided data on species not detectable in line transect surveys such as semi-aquatic, aquatic and nocturnal terrestrial and arboreal species. Although the application of eDNA to inventory mammals still needs some developments to optimize sampling efficiency, it can now be used as a complement to traditional surveys.


Assuntos
DNA Ambiental , Mamíferos , Água , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Guiana Francesa , Mamíferos/classificação , Mamíferos/genética
11.
Science ; 371(6531): 835-838, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602854

RESUMO

Freshwater fish represent one-fourth of the world's vertebrates and provide irreplaceable goods and services but are increasingly affected by human activities. A new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world's rivers covering >40% of the world's continental surface and >37% of the world's river length, whereas <14% of the world's surface and river length remain least impacted. Present-day rivers are more similar to each other and have more fish species with more diverse morphologies and longer evolutionary legacies. In temperate rivers, where the impact has been greatest, biodiversity changes were primarily due to river fragmentation and introduction of non-native species.


Assuntos
Biodiversidade , Peixes , Atividades Humanas , Rios , Animais , Clima , Peixes/classificação , Humanos , Filogenia
12.
Glob Chang Biol ; 26(10): 5509-5523, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32785968

RESUMO

Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long-term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast-flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.


Assuntos
Mudança Climática , Rios , Animais , Ecossistema , Peixes , Água Doce
13.
Sci Total Environ ; 734: 139467, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470662

RESUMO

In the context of increasing pressure on water bodies, many fish-based indices have been developed to evaluate the ecological status of rivers. However, most of these indices suffer from several limitations, which hamper the capacity of water managers to select the most appropriate measures of restoration. Those limitations include: (i) being dependent on reference conditions, (ii) not satisfactorily handling complex and non-linear biological responses to pressure gradients, and (iii) being unable to identify specific risks of stream degradation in a multi-pressure context. To tackle those issues, we developed a diagnosis-based approach using Random Forest models to predict the impairment probabilities of river fish communities by 28 pressure categories (chemical, hydromorphological and biological). In addition, the database includes the abundances of 72 fish species collected from 1527 sites in France, sampled between 2005 and 2015; and fish taxonomic and biological information. Twenty random forest models provided at least good performances when evaluating impairment probabilities of fish communities by those pressures. The best performing models indicated that fish communities were impacted, on average, by 7.34 ±â€¯0.03 abiotic pressure categories (mean ±â€¯SE), and that hydromorphological alterations (5.27 ±â€¯0.02) were more often detected than chemical ones (2.06 ±â€¯0.02). These models showed that alterations in longitudinal continuity, and contaminations by Polycyclic Aromatic Hydrocarbons were respectively the most frequent hydromorphological and chemical pressure categories in French rivers. This approach has also efficiently detected the functional impact of invasive alien species. Identifying and ranking the impacts of multiple anthropogenic pressures that trigger functional shifts in river biological communities is essential for managers to prioritize actions and to implement appropriate restoration programmes. Actually implemented in an R package, this approach has the capacity to detect a variety of impairments, resulting in an efficient assessment of ecological risks across various spatial and temporal scales.


Assuntos
Peixes , Rios , Animais , Ecossistema , Monitoramento Ambiental , França
14.
Biodivers Data J ; 7: e37518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592221

RESUMO

BACKGROUND: Environmental DNA [eDNA] metabarcoding has recently emerged as a non-destructive alternative to traditional sampling for characterising species assemblages. NEW INFORMATION: We here provide a consistent dataset synthetising all eDNA sampling sites in French Guiana to date. Field collections have been initiated in 2014 and have continued until 2019. This dataset is however a work in progress and will be updated after each collecting campaign. We also provide a taxon by site matrix for fishes presence / absence as inferred from eDNA. Our aim is to allow a transparent communication to the stakeholders and provide the foundation for a monitoring programme based on eDNA. The lastest version of the dataset is publicly and freely accessible through the CEBA geoportal (http://vmcebagn-dev.ird.fr) or through the French Guiana geographic portal (https://www.geoguyane.fr).

15.
Proc Natl Acad Sci U S A ; 116(27): 13434-13439, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209040

RESUMO

Identifying the drivers and processes that determine globally the geographic range size of species is crucial to understanding the geographic distribution of biodiversity and further predicting the response of species to current global changes. However, these drivers and processes are still poorly understood, and no ecological explanation has emerged yet as preponderant in explaining the extent of species' geographical range. Here, we identify the main drivers of the geographic range size variation in freshwater fishes at global and biogeographic scales and determine how these drivers affect range size both directly and indirectly. We tested the main hypotheses already proposed to explain range size variation, using geographic ranges of 8,147 strictly freshwater fish species (i.e., 63% of all known species). We found that, contrary to terrestrial organisms, for which climate and topography seem preponderant in determining species' range size, the geographic range sizes of freshwater fishes are mostly explained by the species' position within the river network, and by the historical connection among river basins during Quaternary low-sea-level periods. Large-ranged fish species inhabit preferentially lowland areas of river basins, where hydrological connectivity is the highest, and also are found in river basins that were historically connected. The disproportionately high explanatory power of these two drivers suggests that connectivity is the key component of riverine fish geographic range sizes, independent of any other potential driver, and indicates that the accelerated rates in river fragmentation might strongly affect fish species distribution and freshwater biodiversity.


Assuntos
Peixes , Animais , Biodiversidade , Demografia , Ecossistema , Água Doce , Geografia , Hidrologia , Rios
16.
Sci Rep ; 9(1): 3085, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816174

RESUMO

Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic biodiversity. It is based on the capture of DNA from a water sample. The sampled water volume, a crucial aspect for efficient species detection, has been empirically variable (ranging from few centiliters to tens of liters). This results in a high variability of sampling effort across studies, making comparisons difficult and raising uncertainties about the completeness of eDNA inventories. Our aim was to determine the sampling effort (filtered water volume) needed to get optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), resulting in sampling efforts ranging from 17 to 340 liters of water. We show that sampling 34 liters of water detected more than 64% of the expected fish fauna and permitted to distinguish the fauna between sites and between ecosystem types (stream versus rivers). Above 68 liters, the number of detected species per site increased slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters provided little additional information, testifying that filtering 34 to 68 liters is sufficient to inventory most of the fauna in highly diverse tropical aquatic ecosystems.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , Monitoramento Ambiental/métodos , Peixes/genética , Rios/química , Água/química , Animais , Biodiversidade , Guiana Francesa , Tamanho da Amostra
17.
Mol Ecol Resour ; 19(1): 27-46, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29768738

RESUMO

Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large-scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , DNA/isolamento & purificação , Peixes/classificação , Água Doce/química , Metagenômica/métodos , Animais , DNA/química , Peixes/genética , Guiana
18.
Mitochondrial DNA B Resour ; 4(2): 3153-3154, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33365895

RESUMO

The river stingray Potamotrygon orbignyi is a carnivorous bottom feeder that is widespread in the Amazonian region. We here assemble the 17,449 bp complete mitochondrial genome of the species, showing a typical gene arrangement as for related Potamotrygonidae. The analysis of the COI gene confirmed the identification of the specimen as P. orbignyi. A phylogenetic analysis of all Potamotrygonidae complete mitochondrial genomes highlights the close relationship between P. orbignyi and P. motoro.

19.
Ecol Lett ; 21(11): 1649-1659, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187690

RESUMO

Global spread of non-native species profoundly changed the world biodiversity patterns, but how it translates into functional changes remains unanswered at the world scale. We here show that while in two centuries the number of fish species per river increased on average by 15% in 1569 basins worldwide, the diversity of their functional attributes (i.e. functional richness) increased on average by 150%. The inflation of functional richness was paired with changes in the functional structure of assemblages, with shifts of species position toward the border of the functional space of assemblages (i.e. increased functional divergence). Non-native species moreover caused shifts in functional identity toward higher body sized and less elongated species for most of assemblages throughout the world. Although varying between rivers and biogeographic realms, such changes in the different facets of functional diversity might still increase in the future through increasing species invasion and may further modify ecosystem functioning.


Assuntos
Biodiversidade , Peixes , Espécies Introduzidas , Animais , Ecossistema , Água Doce , Rios
20.
Sci Data ; 4: 170141, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28972575

RESUMO

A growing interest is devoted to global-scale approaches in ecology and evolution that examine patterns and determinants of species diversity and the threats resulting from global change. These analyses obviously require global datasets of species distribution. Freshwater systems house a disproportionately high fraction of the global fish diversity considering the small proportion of the earth's surface that they occupy, and are one of the most threatened habitats on Earth. Here we provide complete species lists for 3119 drainage basins covering more than 80% of the Earth surface using 14953 fish species inhabiting permanently or occasionally freshwater systems. The database results from an extensive survey of native and non-native freshwater fish species distribution based on 1436 published papers, books, grey literature and web-based sources. Alone or in combination with further datasets on species biological and ecological characteristics and their evolutionary history, this database represents a highly valuable source of information for further studies on freshwater macroecology, macroevolution, biogeography and conservation.


Assuntos
Peixes , Animais , Biodiversidade , Bases de Dados Factuais , Ecossistema , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA